Bates distribution: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>BeyondNormality
en>Control.valve
m Removed extraneous comma in first sentence.
 
Line 1: Line 1:
{{Probability distribution
Hello, I'm Clifton, a 21 year old from Cavaillon, France.<br>My hobbies include (but are not limited to) Gaming, Magic and watching Grey's Anatomy.<br><br>My web-site - [http://tinyurl.com/q6d8aya Cheap ghd uk]
  | name      = Beta Negative Binomial
  | type      = mass
  | pdf_image  = No image available
  | cdf_image  = No image available
  | notation  =
  | parameters = <math>\alpha > 0</math> [[shape parameter|shape]] ([[real number|real]])<br /><math>\beta > 0</math> [[shape parameter|shape]] ([[real number|real]]) <br> ''n'' ∈ [[Natural numbers|'''N'''<sub>0</sub>]] — number of trials
  | support    = ''k'' ∈ { 0, 1, 2, 3, ... }
  | pdf        = <math>\frac{n^{(k)}\alpha^{(n)}\beta^{(k)}}{k!(\alpha+\beta)^{(n)}(n+\alpha+\beta)^{(k)}}</math><br>Where <math>x^{(n)}</math> is the '''rising''' [[Pochhammer symbol]]
  | cdf        =
  | mean      = <math>\begin{cases}
              \frac{n\beta}{\alpha-1} & \text{if}\ \alpha>1    \\
              \infty & \text{otherwise}\ \end{cases}</math>
  | median    =
  | mode      =
  | variance  =  <math>\begin{cases}
              \frac{n(\alpha+n-1)\beta(\alpha+\beta-1)}{(\alpha-2){(\alpha-1)}^2} & \text{if}\ \alpha>2    \\
              \infty & \text{otherwise}\ \end{cases}</math>
  | skewness  =  <math>\begin{cases}
              \frac{(\alpha+2n-1)(\alpha+2\beta-1)}{(\alpha-3)\sqrt{\frac{n(\alpha+n-1)\beta(\alpha+\beta-1)}{\alpha-2}}} & \text{if}\ \alpha>3    \\
              \infty & \text{otherwise}\ \end{cases}</math>
  | kurtosis  =
  | entropy    =
  | mgf        =
  | char      =
}}
 
In [[probability theory]], a '''beta negative binomial distribution''' is the [[probability distribution]] of a [[discrete probability distribution|discrete]] [[random variable]]&nbsp;''X'' equal to the number of failures needed to get ''n'' successes in a sequence of [[independence (probability theory)|independent]] [[Bernoulli trial]]s where the probability ''p'' of success on each trial is constant within any given experiment but is itself a random variable following a [[beta distribution]], varying between different experiments. Thus the distribution is a [[compound probability distribution]].
 
This distribution has also been called both the '''inverse Markov-Pólya distribution''' and the '''generalized Waring distribution'''.<ref name=Johnson>Johnson et al. (1993)</ref> A shifted form of the distribution has been called the '''beta-Pascal distribution'''.<ref name=Johnson/>
 
If parameters of the beta distribution are ''&alpha;'' and ''&beta;'' , and if
:<math>
X \mid p \sim \mathrm{NB}(n,p),
</math>
where
:<math>
p \sim \textrm{B}(\alpha,\beta),
</math>
then the marginal distribution of ''X'' is a beta negative binomial distribution:
:<math>
X \sim \mathrm{BNB}(n,\alpha,\beta).
</math>
 
In the above, NB(''n'',&nbsp;''p'') is the [[negative binomial distribution]] and B(''&alpha;'',&nbsp;''&beta;'') is the [[beta distribution]].
 
==PMF expressed with Gamma==
Since the rising Pochhammer symbol can be expressed in terms of the [[Gamma function]], the numerator of the PMF as given can be expressed as:
:<math>\frac{\Gamma(n+k)\Gamma(\alpha+n)\Gamma(\beta+k)}{\Gamma(n)\Gamma(\alpha)\Gamma(\beta)}</math>.
Likewise, the denominator can be rewritten as:
:<math>\frac{\Gamma(\alpha+\beta)\Gamma(\alpha+\beta+n)}{k!\Gamma(\alpha+\beta+n)\Gamma(\alpha+\beta+n+k)}</math>,
and the two <math>{\Gamma(\alpha+\beta+n)}</math> terms cancel out, leaving:
:<math>\frac{\Gamma(\alpha+\beta)}{k!\Gamma(\alpha+\beta+n+k)}</math>.
As <math>\frac{\Gamma(n+k)}{k!\Gamma(n)} = \binom{n+k-1}k</math>, the PMF can be rewritten as:
:<math>\binom{n+k-1}k\frac{\Gamma(\alpha+n)\Gamma(\beta+k)\Gamma(\alpha+\beta)}{\Gamma(\alpha+\beta+n+k)\Gamma(\alpha)\Gamma(\beta)}</math>.
===PMF expressed with Beta===
Using the [[beta function]], the PMF is:
:<math>\binom{n+k-1}k\frac{\Beta(\alpha+n,\beta+k)}{\Beta(\alpha,\beta)}</math>.
Replacing the [[binomial coefficient]] by a beta function, the PMF can also be written:
:<math>\frac{\Beta(\alpha+n,\beta+k)}{k\Beta(\alpha,\beta)\Beta(n,k)}</math>.
 
==Notes==
{{reflist}}
 
==References==
*Jonhnson, N.L.; Kotz, S.; Kemp, A.W. (1993) ''Univariate Discrete Distributions'', 2nd edition, Wiley ISBN 0-471-54897-9  (Section 6.2.3)
*Kemp, C.D.; Kemp, A.W. (1956) "Generalized hypergeometric distributions'', ''[[Journal of the Royal Statistical Society]]'', Series B, 18, 202&ndash;211
*Wang, Zhaoliang (2011) "One mixed negative binomial distribution with application", ''Journal of Statistical Planning and Inference'', 141 (3), 1153-1160 {{DOI|10.1016/j.jspi.2010.09.020}}
 
==External links==
* Interactive graphic: [http://www.math.wm.edu/~leemis/chart/UDR/UDR.html Univariate Distribution Relationships]
 
{{ProbDistributions|discrete-infinite}}
 
[[Category:Discrete distributions]]
[[Category:Compound distributions]]
[[Category:Factorial and binomial topics]]
[[Category:Probability distributions]]

Latest revision as of 22:30, 5 September 2014

Hello, I'm Clifton, a 21 year old from Cavaillon, France.
My hobbies include (but are not limited to) Gaming, Magic and watching Grey's Anatomy.

My web-site - Cheap ghd uk