Whitehurst & Son sundial (1812): Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>ClemRutter
Checked no conflict of interest- just being courteous: Gerry you may like to look at some of the Hovercraft articles and see if there is anything to add
The Maths: The results in the table of hour angles were for latitude 51 degrees, 9 min, 36 sec (or 51.16 degrees). I corrected the table for Belper latitude 53.03 degrees.
Line 1: Line 1:
In [[mathematics]], '''Lady Windermere's Fan''' is a telescopic identity employed to relate global and local error of a [[Numerical analysis|numerical algorithm]]. The name is derived from [[Oscar Wilde]]'s play [[Lady Windermere's Fan|Lady Windermere's Fan, A Play About a Good Woman]].
My name is Millie (23 years old) and my hobbies are Exhibition Drill and People watching.<br><br>Also visit my blog post ... [https://www.rebelmouse.com/dizzytailor4957/great-roofing-tips-you-should--772173738.html quality retailing]
 
==Lady Windermere's Fan for a function of one variable==
Let <math>E(\ \tau,t_0,y(t_0)\ )</math> be the '''exact solution operator''' so that:
::<math>y(t_0+\tau) = E(\tau,t_0,y(t_0))\ y(t_0)</math>
with <math>t_0</math> denoting the initial time and <math>y(t)</math> the function to be approximated with a given <math>y(t_0)</math>.
 
Further let <math>y_n</math>, <math>n \in \N,\ n\le N</math> be the numerical approximation at time <math>t_n</math>, <math>t_0 < t_n \le T = t_N</math>. <math>y_n</math> can be attained by means of the '''approximation operator''' <math>\Phi(\ h_n,t_n,y(t_n)\ )</math> so that:
::<math>y_n = \Phi(\ h_{n-1},t_{n-1},y(t_{n-1})\ )\ y_{n-1}\quad</math> with <math>h_n = t_{n+1} - t_n</math>
 
The approximation operator represents the numerical scheme used. For a simple explicit forward [[Euler method|euler scheme]] with step witdth <math>h</math> this would be: <math>\Phi_{\text{Euler}}(\ h,t_{n-1},y(t_{n-1})\ )\ y(t_{n-1}) = (1 + h \frac{d}{dt})\ y(t_{n-1})</math>
 
The '''local error''' <math>d_n</math> is then given by:
::<math>d_n:= D(\ h_{n-1},t_{n-1},y(t_{n-1}\ )\ y_{n-1} := \left[ \Phi(\ h_{n-1},t_{n-1},y(t_{n-1})\ ) - E(\ h_{n-1},t_{n-1},y(t_{n-1})\ ) \right]\ y_{n-1} </math>
 
In abbreviation we write:
::<math>\Phi(h_n) := \Phi(\ h_n,t_n,y(t_n)\ )</math>
::<math>E(h_n) := E(\ h_n,t_n,y(t_n)\ )</math>
::<math>D(h_n) := D(\ h_n,t_n,y(t_n)\ )</math>
 
Then '''Lady Windermere's Fan''' for a function of a single variable <math>t</math> writes as:
 
<math>y_N-y(t_N) = \prod_{j=0}^{N-1}\Phi(h_j)\ (y_0-y(t_0)) + \sum_{n=1}^N\ \prod_{j=n}^{N-1} \Phi(h_j)\ d_n </math>
 
with a global error of <math>y_N-y(t_N)</math>
 
===Explanation===
<math>\begin{align}
y_N - y(t_N) &{}=
    y_N - \underbrace{\prod_{j=0}^{N-1} \Phi(h_j)\ y(t_0) + \prod_{j=0}^{N-1} \Phi(h_j)\ y(t_0)}_{=0} - y(t_N) \\
&{}= y_N - \prod_{j=0}^{N-1} \Phi(h_j)\ y(t_0) + \underbrace{\sum_{n=0}^{N-1}\ \prod_{j=n}^{N-1} \Phi(h_j)\ y(t_n) - \sum_{n=1}^N\ \prod_{j=n}^{N-1} \Phi(h_j)\ y(t_n)}_{=\prod_{n=0}^{N-1} \Phi(h_n)\ y(t_n)-\sum_{n=N}^{N}\left[\prod_{j=n}^{N-1} \Phi(h_j)\right]\ y(t_n) = \prod_{j=0}^{N-1} \Phi(h_j)\ y(t_0) - y(t_N) } \\
&{}= \prod_{j=0}^{N-1}\Phi(h_j)\ y_0 - \prod_{j=0}^{N-1}\Phi(h_j)\ y(t_0) + \sum_{n=1}^N\ \prod_{j=n-1}^{N-1} \Phi(h_j)\ y(t_{n-1}) - \sum_{n=1}^N\ \prod_{j=n}^{N-1} \Phi(h_j)\ y(t_n) \\
&{}= \prod_{j=0}^{N-1}\Phi(h_j)\ (y_0-y(t_0)) + \sum_{n=1}^N\ \prod_{j=n}^{N-1} \Phi(h_j) \left[ \Phi(h_{n-1}) - E(h_{n-1}) \right] \ y(t_{n-1}) \\
&{}= \prod_{j=0}^{N-1}\Phi(h_j)\ (y_0-y(t_0)) + \sum_{n=1}^N\ \prod_{j=n}^{N-1} \Phi(h_j)\ d_n
\end{align}</math>
 
==See also==
* [[Baker–Campbell–Hausdorff formula]]
* [[Numerical error]]
 
{{Lady Windermere's Fan}}
 
{{DEFAULTSORT:Lady Windermere's Fan (Mathematics)}}
[[Category:Numerical analysis]]

Revision as of 00:36, 2 March 2014

My name is Millie (23 years old) and my hobbies are Exhibition Drill and People watching.

Also visit my blog post ... quality retailing