Rogers–Szegő polynomials: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Yobot
m References: WP:CHECKWIKI error fixes / special characters in pagetitle using AWB (9485)
en>Trappist the monk
m References: replace mr template with mr parameter in CS1 templates; using AWB
 
Line 1: Line 1:
In mathematics, the '''Tricomi–Carlitz polynomials''' or '''(Carlitz–)Karlin–McGregor polynomials''' are polynomials studied by {{harvs|txt|last=Tricomi|authorlink=Francesco Tricomi|year=1951}} and {{harvs|txt|authorlink=Leonard Carlitz|last=Carlitz|year=1958}} and {{harvs|txt|authorlink=Samuel Karlin|last=Karlin|last2=McGregor|author2-link=James Lewin McGregor|year=1959}}, related to [[random walk]]s on the [[positive integers]].
I'm Ludie and was born on 5 April 1990. My hobbies are Shortwave listening and Home Movies.<br><br>Review my website :: check this out ([http://www.google.com http://www.google.com])
 
They are given in terms of [[Laguerre polynomials]] by
:<math>\displaystyle l_n(x)=(-1)^nL_n^{(x-n)}(x).</math>
 
They are special cases of the [[Chihara–Ismail polynomials]].
 
==References==
 
*{{Citation | last1=Carlitz | first1=Leonard | title=On some polynomials of Tricomi | mr=0103303 | year=1958 | journal=Boll. Un. Mat. Ital. (3) | volume=13 | pages=58–64}}
*{{Citation | last1=Karlin | first1=Samuel | last2=McGregor | first2=James | title=Random walks | url=http://projecteuclid.org/euclid.ijm/1255454999 | mr=0100927 | year=1959 | journal=Illinois Journal of Mathematics | issn=0019-2082 | volume=3 | pages=66–81}}
*{{Citation | last1=Tricomi | first1=Francesco G. | title=A class of non-orthogonal polynomials related to those of Laguerre | mr=0051351 | year=1951 | journal=Journal d'Analyse Mathématique | issn=0021-7670 | volume=1 | pages=209–231}}
 
{{DEFAULTSORT:Tricomi-Carlitz polynomials}}
[[Category:Orthogonal polynomials]]

Latest revision as of 22:41, 25 September 2014

I'm Ludie and was born on 5 April 1990. My hobbies are Shortwave listening and Home Movies.

Review my website :: check this out (http://www.google.com)