Particle deposition: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Williams12357
 
en>ChrisGualtieri
m General Fixes using AWB
Line 1: Line 1:
== Abercrombie Fitch  Nebenwirkungen ==
In [[order theory]] a '''better-quasi-ordering''' or '''bqo''' is a [[quasi-ordering]] that does not admit a certain type of bad array. Every bqo is [[well-quasi-order]]ed.


Information über die häufigsten Anwendungen, Nebenwirkungen, Wechselwirkungen, Dosierung und Lagerung. Wenn Sie in Schwierigkeiten mit der Anerkennung die Symbole der einzelnen Icons laufen, helfen Sie sich mit ihren Beschreibungen, die in der oberen linken Ecke des Displays angezeigt.. <br><br>Der Senat Version enthält auch Sprache über die Abtreibung, dass einige Demokraten inakzeptabel finden Sprache, die die ganze Sache töten könnten. [48] [49] Moore schließlich zog seine Forschungsausschusses und beendete alle Spekulationen von eine Präsidentschaftskandidatur im November 2011, als er verkündete, er im Jahr 2012 die Wahl in seinem früheren Posten des Chief Justice von der Alabama Supreme Court suchen würden. <br><br>Halten sie sprechen für mindestens fünf Minuten. Während Sexualerziehung könnte die einzige Waffe Gesellschaft hat vor sexuell übertragbaren Krankheiten wie AIDS und Syphilis, gibt es auch ein Argument von vielen Gläubigen, dass solche Krankheiten sind wirklich 'Strafen von Gott' für die sündigen Taten.. <br><br>VCJD unterscheidet sich von anderen Formen der Creutzfeldt-Jakob-Krankheit in diesem abnormen Prion-Protein ( PrP) in Tonsillenbiopsie Gewebe vor dem Tod und in der lymphoretikulären Systems und einigen anderen Geweben nach death.3 Ansammlung von abnormalen PrP in follikulären dendritischen Zellen von lymphoretikulären Gewebe nachgewiesen wird angenommen, Invasion des zentralen [http://www.paint-point.ch/energy/inc/config.asp?a=96-Abercrombie-Fitch Abercrombie Fitch] Nervensystems und der bisherigen observations4 5 voran das Vorhandensein von abnormalen PrP in archivierten chirurgischen Proben vor der [http://www.ferotech.ch/highslide/graphics/outlines/define.asp?r=20-Ray-Ban-Shop-Online Ray Ban Shop Online] Entwicklung klinischer Symptome entfernt bestätigt.. <br><br>Davon abgesehen, hier ist mein nehmen auf Obamas Vorschläge Kongress. Ein Kissen jeweils unter die Knie und ihr Gesäß nützlich und komfortabel in der richtigen Ausrichtung des jeweils anderen Genitalien zu helfen. Und viele dieser Textur ist in der Galaxy S II Foto gegangen (die niedrigere Auflösung hilft hier nicht entweder), während es sich hervorragend in das Xperia S Schuss gemacht .. <br><br>Wenn rick bei der Gruppe angekommen nahm er iver. 41 am Stichtag. Welche Suchmaschinen gibt es? BASE. Er sagt, er kaufte das Gemälde für 300 US-Dollar bei einer Auktion in Deutschland .. Hoffentlich haben sie [http://www.ferotech.ch/highslide/graphics/outlines/define.asp?r=56-Ray-Ban-Wayfarer-Preis Ray Ban Wayfarer Preis] so beschäftigt, arbeiten an 3D-Vision 3.0 war und ist, warum sie über 3D-Vision jetzt Scheiße.. [http://www.cattledog-kelpie.ch/infragistics/Images/Large/config.asp?b=66-Beats-By-Dre-Wireless-Schweiz Beats By Dre Wireless Schweiz] <br><br>Leben und Zeiten von Frederick Douglass, Geschrieben von selber. Dies wird als eine maximal verschränkten Zustand Glocke und geschrieben werden kann. Die Plattform von Grund auf für Tablet-Einsatz konzipiert bietet Ihnen Software UI-Navigationstasten in der unteren linken Ecke zurück, Home und Task-Switcher (plus einen Screenshot Schlüssel dank TouchWiz ), die Suche Verknüpfungen auf der oberen linken, dem App Schublade oben rechts und schließlich, aber sicherlich nicht zuletzt wichtiger ist, die Benachrichtigung / Schnelleinstellungen Bereich (wieder, dank TouchWiz) in der unteren rechten Winkel ...<ul>
== Motivation ==
 
 
  <li>[http://www.juegosetnicos.com.ar/spip.php?article87&lang=ru/ http://www.juegosetnicos.com.ar/spip.php?article87&lang=ru/]</li>
Though [[wqo]] is an appealing notion, many important infinitary operations do not preserve [[wqo]]ness.  
 
An example due to [[Richard Rado]] illustrates this.<ref name="Rado54"/>  
  <li>[http://www.magiyy.com:30006/forum.php?mod=viewthread&tid=2795134 http://www.magiyy.com:30006/forum.php?mod=viewthread&tid=2795134]</li>
In a 1965 paper [[Nash-Williams|Crispin Nash-Williams]] formulated the stronger notion of bqo in order to prove that the class of [[Tree (set theory)|tree]]s of height ω is [[wqo]] under the [[topological minor]] relation.<ref name="Nash-Williams65"/> Since then, many [[quasi-order]]s have been proven to be [[wqo]] by proving them to be bqo. For instance, [[Richard Laver]] established [[Roland Fraïssé|Fraïssé's]] conjecture by proving that the class of [[scattered]] [[linear order]] types is bqo.<ref name="Laver71"/> More recently, Carlos Martinez-Ranero has proven that, under the [[Proper Forcing Axiom]], the class of [[Aronszajn line]]s is bqo under the embeddability relation.<ref name="Martinez-Ranero2011"/>
 
 
  <li>[http://www.philatelie-france-russie.fr/spip.php?article51/ http://www.philatelie-france-russie.fr/spip.php?article51/]</li>
== Definition ==
 
 
  <li>[http://www.cslmz.net/forum.php?mod=viewthread&tid=371168 http://www.cslmz.net/forum.php?mod=viewthread&tid=371168]</li>
It is common in bqo theory to write <math> {_*}x </math> for the sequence <math>x</math> with the first term omitted. Write <math>[\omega]^{<\omega}</math> for the set of finite, strictly increasing sequences with terms in <math>\omega</math>, and define a relation <math>\triangleleft</math> on <math>[\omega]^{<\omega}</math> as follows: <math>s\triangleleft t</math> if and only if there is <math>u</math> such that <math>s</math> is a strict initial segment of <math>u</math> and <math>t={}_*u</math>. Note that the relation <math>\triangleleft</math> is not [[Transitive relation|transitive]].
 
 
  <li>[http://cerisier.info/spip.php?article20/ http://cerisier.info/spip.php?article20/]</li>
A ''block'' is a subset ''B'' of <math>[\omega]^{<\omega}</math> that contains an initial segment of every
 
infinite subset of <math>\bigcup B</math>. For a [[quasi-order]] <math>Q</math> a ''<math>Q</math>-pattern'' is a function from a block ''B'' into <math>Q</math>. A <math>Q</math>-pattern <math>f\colon B\to Q</math> is said to be ''bad'' if <math>f(s)\not \le_Q f(t)</math> for every pair <math>s,t\in B</math> such that <math>s\triangleleft t</math>; otherwise <math>f</math> is ''good''. A [[quasi-order]] <math>Q</math> is ''better-quasi-ordered'' (''bqo'') if there is no bad <math>Q</math>-pattern.
  </ul>
 
In order to make this definition easier to work with, Nash-Williams defines a ''barrier'' to be a block whose elements are pairwise [[Comparability|incomparable]] under the inclusion relation <math>\subset</math>. A ''<math>Q</math>-array'' is a <math>Q</math>-pattern whose domain is a barrier. By observing that every block contains a barrier, one sees that <math>Q</math> is bqo if and only if there is no bad <math>Q</math>-array.
 
== Simpson's alternative definition ==
 
Simpson introduced an alternative definition of bqo in terms of Borel maps <math>[\omega]^{\omega}\to Q</math>, where <math>[\omega]^{\omega}</math>, the set of infinite subsets of <math>\omega</math>, is given the usual (product) topology.<ref name="Simpson85"/>
 
Let ''<math>Q</math>'' be a quasi-order and endow <math>Q</math> with the [[discrete topology]]. A ''<math>Q</math>-array'' is a [[Borel function]] <math>[A]^{\omega}\to Q</math> for some infinite subset <math>A</math> of <math>\omega</math>. A <math>Q</math>-array <math>f</math> is ''bad'' if <math>f(X)\not\le_Q f({_*}X)</math> for every <math>X\in[A]^{\omega}</math>;
<math>f</math> is ''good'' otherwise. The quasi-order <math>Q</math> is ''bqo'' if there is no bad <math>Q</math>-array in this sense.
 
== Major theorems ==
 
Many major results in bqo theory are consequences of the Minimal Bad Array Lemma, which appears in Simpson's paper<ref name="Simpson85"/> as follows. See also Laver's paper,<ref name="Laver78"/> where the Minimal Bad Array Lemma was first stated as a result. The technique was present in Nash-Williams' original 1965 paper.
 
Suppose <math>(Q,\le_Q)</math> is a [[quasi-order]]. A ''partial ranking'' <math>\le'</math> of <math>Q</math> is a [[well-founded]] [[partial order]]ing of <math>Q</math> such that <math>q\le'r \to q \le_Q r</math>. For bad <math>Q</math>-arrays (in the sense of Simpson) <math>f\colon [A]^{\omega}\to Q</math> and <math>g\colon [B]^{\omega}\to Q</math>, define:
: <math>g\le^* f \text{ if } B\subseteq A \text{ and } g(X)\le' f(X) \text{ for every } X\in[B]^{\omega}</math>
: <math>g <^* f \text{ if } B\subseteq A \text{ and } g(X) <' f(X) \text{ for every } X\in[B]^{\omega}</math>
We say a bad <math>Q</math>-array <math>g</math> is ''minimal bad'' (with respect to the partial ranking <math>\le'</math>) if there is no bad <math>Q</math>-array <math>f</math> such that <math>f <^* g</math>.
Note that the definitions of <math>\le^*</math> and <math><'</math> depend on a partial ranking <math>\le'</math> of <math>Q</math>. Note also that the relation <math><^*</math> is not the strict part of the relation <math>\le^*</math>.
 
'''Theorem''' (Minimal Bad Array Lemma)'''.''' Let <math>Q</math> be a [[quasi-order]] equipped with a partial ranking and suppose <math>f</math> is a bad <math>Q</math>-array. Then there is a minimal bad <math>Q</math>-array <math>g</math> such that <math>g \le^* f</math>.
 
==See also==
 
* [[Well-quasi-ordering]]
* [[Well-order]]
 
==References==
 
{{Reflist|
refs=
<ref name = "Laver71">{{
cite journal
| last1 = Laver
| first1 = Richard
| title = On Fraisse's Order Type Conjecture
| journal = The Annals of Mathematics
| volume = 93
|issue = 1
| year = 1971
| pages = 89–111
| jstor = 1970754
| doi = 10.2307/1970754
}}</ref>
<ref name="Martinez-Ranero2011">{{
cite journal
| last1 = Martinez-Ranero
| first1 = Carlos
| title = Well-quasi-ordering Aronszajn lines
| journal = Fundamenta Mathematicae
| volume = 213
| issue = 3
| year = 2011
| pages = 197–211
| issn = 0016-2736
| doi = 10.4064/fm213-3-1
| mr = 2822417
}}</ref>
<ref name = "Nash-Williams65">{{
cite journal
| last1 = Nash-Williams
| first1 = C. St. J. A.
| authorlink1 = Crispin Nash-Williams
| title = On well-quasi-ordering infinite trees
| journal = Mathematical Proceedings of the Cambridge Philosophical Society
| volume = 61
| issue = 3
| year = 1965
| pages = 697–720
| issn = 0305-0041
| doi = 10.1017/S0305004100039062
| mr = 0175814
| bibcode = 1965PCPS...61..697N
}}</ref>
<ref name = "Rado54">{{
cite journal
| last = Rado
| first = Richard
| authorlink = Richard Rado
| title = Partial well-ordering of sets of vectors
| journal = Mathematika
| year = 1954
| volume = 1
| pages = 89–95
| doi = 10.1112/S0025579300000565
| mr = 0066441
| issue = 2
}}</ref>
<ref name = "Simpson85">{{
cite book
| last = Simpson
| first = Stephen G.
| chapter = BQO Theory and Fraïssé's Conjecture
| title = Recursive Aspects of Descriptive Set Theory
| editor1-last = Mansfield
| editor1-first = Richard
| editor2-last = Weitkamp
| editor2-first = Galen
| publisher = The Clarendon Press, Oxford University Press
| year = 1985
| pages = 124–38
| mr = 786122
| isbn = 978-0-19-503602-2
}}</ref>
<ref name = "Laver78">{{
cite book
| last = Laver
| first = Richard
| chapter = Better-quasi-orderings and a class of trees
| title = Studies in foundations and combinatorics
| editor1-last = Rota
| editor1-first = Gian-Carlo
| publisher = Academic Press
| year = 1978
| pages = 31–48
| mr = 0520553
  | isbn = 978-0-12-599101-8
}}</ref>
}}
 
[[Category:Mathematical relations]]
[[Category:Order theory]]
[[Category:Wellfoundedness]]

Revision as of 18:10, 26 October 2013

In order theory a better-quasi-ordering or bqo is a quasi-ordering that does not admit a certain type of bad array. Every bqo is well-quasi-ordered.

Motivation

Though wqo is an appealing notion, many important infinitary operations do not preserve wqoness. An example due to Richard Rado illustrates this.[1] In a 1965 paper Crispin Nash-Williams formulated the stronger notion of bqo in order to prove that the class of trees of height ω is wqo under the topological minor relation.[2] Since then, many quasi-orders have been proven to be wqo by proving them to be bqo. For instance, Richard Laver established Fraïssé's conjecture by proving that the class of scattered linear order types is bqo.[3] More recently, Carlos Martinez-Ranero has proven that, under the Proper Forcing Axiom, the class of Aronszajn lines is bqo under the embeddability relation.[4]

Definition

It is common in bqo theory to write *x for the sequence x with the first term omitted. Write [ω]<ω for the set of finite, strictly increasing sequences with terms in ω, and define a relation on [ω]<ω as follows: st if and only if there is u such that s is a strict initial segment of u and t=*u. Note that the relation is not transitive.

A block is a subset B of [ω]<ω that contains an initial segment of every infinite subset of B. For a quasi-order Q a Q-pattern is a function from a block B into Q. A Q-pattern f:BQ is said to be bad if f(s)Qf(t) for every pair s,tB such that st; otherwise f is good. A quasi-order Q is better-quasi-ordered (bqo) if there is no bad Q-pattern.

In order to make this definition easier to work with, Nash-Williams defines a barrier to be a block whose elements are pairwise incomparable under the inclusion relation . A Q-array is a Q-pattern whose domain is a barrier. By observing that every block contains a barrier, one sees that Q is bqo if and only if there is no bad Q-array.

Simpson's alternative definition

Simpson introduced an alternative definition of bqo in terms of Borel maps [ω]ωQ, where [ω]ω, the set of infinite subsets of ω, is given the usual (product) topology.[5]

Let Q be a quasi-order and endow Q with the discrete topology. A Q-array is a Borel function [A]ωQ for some infinite subset A of ω. A Q-array f is bad if f(X)Qf(*X) for every X[A]ω; f is good otherwise. The quasi-order Q is bqo if there is no bad Q-array in this sense.

Major theorems

Many major results in bqo theory are consequences of the Minimal Bad Array Lemma, which appears in Simpson's paper[5] as follows. See also Laver's paper,[6] where the Minimal Bad Array Lemma was first stated as a result. The technique was present in Nash-Williams' original 1965 paper.

Suppose (Q,Q) is a quasi-order. A partial ranking of Q is a well-founded partial ordering of Q such that qrqQr. For bad Q-arrays (in the sense of Simpson) f:[A]ωQ and g:[B]ωQ, define:

g*f if BA and g(X)f(X) for every X[B]ω
g<*f if BA and g(X)<f(X) for every X[B]ω

We say a bad Q-array g is minimal bad (with respect to the partial ranking ) if there is no bad Q-array f such that f<*g. Note that the definitions of * and < depend on a partial ranking of Q. Note also that the relation <* is not the strict part of the relation *.

Theorem (Minimal Bad Array Lemma). Let Q be a quasi-order equipped with a partial ranking and suppose f is a bad Q-array. Then there is a minimal bad Q-array g such that g*f.

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

  1. Cite error: Invalid <ref> tag; no text was provided for refs named Rado54
  2. Cite error: Invalid <ref> tag; no text was provided for refs named Nash-Williams65
  3. Cite error: Invalid <ref> tag; no text was provided for refs named Laver71
  4. Cite error: Invalid <ref> tag; no text was provided for refs named Martinez-Ranero2011
  5. 5.0 5.1 Cite error: Invalid <ref> tag; no text was provided for refs named Simpson85
  6. Cite error: Invalid <ref> tag; no text was provided for refs named Laver78