Cantitruncated tesseractic honeycomb: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Tomruen
No edit summary
 
en>Tomruen
5-polytope
 
Line 1: Line 1:
In [[mathematics]], the ''n''-th '''hyperharmonic number''' of order ''r'', denoted by <math>H_n^{(r)}</math>, is recursively defined by the relations:
Ambushed at a movie theater where the only recourse is to bury your nose in the popcorn.<br>Apply an ounce  of sunscreen to your entire body 30 minutes before going outside. Reapply every two hours or immediately after swimming or excessive sweating.<br>[http://www.shlgrouptr.com/warm/?p=219 http://www.shlgrouptr.com/warm/?p=219] cheap ugg boots size 4, <br/> [http://www.shlgrouptr.com/warm/?p=81 http://www.shlgrouptr.com/warm/?p=81] cheap ugg boots uk next day delivery, <br/> [http://www.shlgrouptr.com/warm/?p=262 http://www.shlgrouptr.com/warm/?p=262] cheap ugg boots online ireland, <br/> [http://www.shlgrouptr.com/warm/?p=367 http://www.shlgrouptr.com/warm/?p=367] cheap ugg high tops, <br/> [http://www.shlgrouptr.com/warm/?p=2 http://www.shlgrouptr.com/warm/?p=2] cheap ugg boots, <br/> , <br/><br>http://www.art-kai.sakura.ne.jp/userinfo.php?uid=7853<br>http://operation-oldschool.eu/modules.php?name=Your_Account&op=userinfo&username=RYarborou
 
: <math> H_n^{(0)} = \frac{1}{n} ,</math>
 
and
 
: <math> H_n^{(r)} = \sum_{k=1}^n H_k^{(r-1)}\quad(r>0). </math>
 
In particular, <math>H_n=H_n^{(1)}</math> is the ''n''-th [[harmonic number]].
 
The hyperharmonic numbers were discussed by [[John Horton Conway|J. H. Conway]] and [[Richard K. Guy|R. K. Guy]] in their 1995 book ''[[The Book of Numbers (maths)|The Book of Numbers]]''.<ref name=ConwayGuy/>{{rp|258}}
 
==Identities involving hyperharmonic numbers==
 
By definition, the hyperharmonic numbers satisfy the [[recurrence relation]]
 
:<math> H_n^{(r)} = H_{n-1}^{(r)} + H_n^{(r-1)}. </math>
 
In place of the recurrences, there is a more effective formula to calculate these numbers:
 
: <math> H_{n}^{(r)}=\binom{n+r-1}{r-1}(H_{n+r-1}-H_{r-1}). </math>
 
The hyperharmonic numbers have a strong relation to combinatorics of permutations. The generalization of the identity
 
: <math> H_n = \frac{1}{n!}\left[{n+1 \atop 2}\right]. </math>
 
reads as
 
: <math> H_n^{(r)} = \frac{1}{n!}\left[{n+r \atop r+1}\right]_r, </math>
 
where <math>\left[{n \atop r}\right]_r</math> is an ''r''-Stirling number of the first kind.<ref name='BGG'>{{cite journal | last1 = Benjamin | first1 = A. T. | last2 = Gaebler | first2 = D. | last3 = Gaebler | first3 = R. | title = A combinatorial approach to hyperharmonic numbers | journal = Integers | year = 2003 | issue = 3 | pages = 1–9 }}</ref>
 
==Asymptotics==
 
The above expression with binomial coefficients easily gives that for all fixed order ''r>=2'' we have.<ref name='MezoDil'>{{cite journal | last1 = Mező | first1 = István| last2 = Dil | first2 = Ayhan | title = Hyperharmonic series involving Hurwitz zeta function | journal = Journal of Number Theory| year = 2010 | issue = 130 | pages = 360–369 }}</ref>
: <math> H_n^{(r)}\sim\frac{1}{(r-1)!}\left(n^{r-1}\ln(n)\right),</math>
that is, the quotient of the left and right hand side tends to 1 as ''n'' tends to infinity.
 
An immediate consequence is that
: <math> \sum_{n=1}^\infty\frac{H_n^{(r)}}{n^m}<+\infty </math>
 
when ''m>r''.
 
==Generating function and infinite series==
 
The [[generating function]] of the hyperharmonic numbers is
 
: <math> \sum_{n=0}^\infty H_n^{(r)}z^n=-\frac{\ln(1-z)}{(1-z)^r}. </math>
 
The [[Exponential generating function#Exponential_generating_function|exponential generating function]] is much more harder to deduce. One has that for all ''r=1,2,...''
 
: <math>\sum_{n=0}^\infty H_n^{(r)}\frac{t^n}{n!}=e^t\left(\sum_{n=1}^{r-1}H_n^{(r-n)}\frac{t^n}{n!}+\frac{(r-1)!}{(r!)^2}t^r\, _2 F_2\left(1,1;r+1,r+1;-t\right)\right),
</math>
where ''<sub>2</sub>F<sub>2</sub>'' is a [[hypergeometric function]]. The ''r=1'' case for the harmonic numbers is a classical result, the general one was proved in 2009 by I. Mező and A. Dil.<ref name = 'MezoDil'>{{Cite journal
| last1 = Mező | first1 = István
| last2 = Dil | first2 = Ayhan
| title = Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence
| year = 2009
| volume = 7
| issue = 2
| pages = 310–321
| journal = Central European Journal of Mathematics
}}</ref>
 
The next relation connects the hyperharmonic numbers to the [[Hurwitz zeta function]]:<ref name= MezoDil/>
 
: <math>\sum_{n=1}^\infty\frac{H_n^{(r)}}{n^m}=\sum_{n=1}^\infty H_n^{(r-1)}\zeta(m,n)\quad(r\ge1,m\ge r+1). </math>
 
==An open conjecture==
 
It is known, that the harmonic numbers are never integers except the case ''n=1''. The same question can be posed with respect to the hyperharmonic numbers: are there integer hyperharmonic numbers? István Mező proved<ref name='Mezo'>{{cite journal | last1 = Mező | first1 = István | title = About the non-integer property of the hyperharmonic numbers | journal = Annales Universitatis Scientarium Budapestinensis de Rolando Eötvös Nominatae, Sectio Mathematica | year = 2007 | issue = 50 | pages = 13–20 }}</ref> that if ''r=2'' or ''r=3'', these numbers are never integers except the trivial case when ''n=1''. He conjectured that this is always the case, namely, the hyperharmonic numbers of order ''r'' are never integers except when ''n=1''. This conjecture was justified for a class of parameters by R. Amrane and H. Belbachir.<ref name='AB'>{{cite journal | last1 = Amrane | first1 = R. A. | last2 = Belbachir | first2 = H. | title = Non-integerness of class of hyperharmonic numbers | journal = Annales Mathematicae et Informaticae | year = 2010 | issue = 37 | pages = 7–11 }}</ref> Especially, these authors proved that <math>H_n^{(4)}</math> is not integer for all n=2,3,...
 
==External links==
* [http://mathworld.wolfram.com/HarmonicNumber.html Wolfram MathWorld]
 
==Notes==
{{reflist|refs=
<ref name=ConwayGuy>
{{Cite book
| last1 = John H. | first1 = Conway
| last2 = Richard K. | first2 = Guy
| title = The book of numbers
| year = 1995
| publisher = Copernicus
}}</ref>
}}
 
{{DEFAULTSORT:Hyperharmonic number}}
[[Category:Number theory]]

Latest revision as of 17:21, 27 December 2014

Ambushed at a movie theater where the only recourse is to bury your nose in the popcorn.
Apply an ounce of sunscreen to your entire body 30 minutes before going outside. Reapply every two hours or immediately after swimming or excessive sweating.
http://www.shlgrouptr.com/warm/?p=219 cheap ugg boots size 4,
http://www.shlgrouptr.com/warm/?p=81 cheap ugg boots uk next day delivery,
http://www.shlgrouptr.com/warm/?p=262 cheap ugg boots online ireland,
http://www.shlgrouptr.com/warm/?p=367 cheap ugg high tops,
http://www.shlgrouptr.com/warm/?p=2 cheap ugg boots,
,

http://www.art-kai.sakura.ne.jp/userinfo.php?uid=7853
http://operation-oldschool.eu/modules.php?name=Your_Account&op=userinfo&username=RYarborou