Geometrization conjecture: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Citation bot
m [487]Tweak: doi. | EdwardH
Uniqueness: Corrected improper use of adverb "however" with adjective "nevertheless" to express intended concept
Line 1: Line 1:
{{Use dmy dates|date=July 2013}}
But how do you make a change? This can be a bad idea because of the fact these types of web sites are actually not very very good in reality. Once you discover out in case the cell cell phone number is available, the net webpage can tell you what metropolis and status the telephone wide range is produced by - to make sure more additional this can be fundamentally the cell phone number you desire to get information regarding. In this fashion, it happens to be easy to track down the person that may be intending to menace you with a variety of pranks. The charge for the a particular-time research is merely under $15, that is surely minimal and according to the factors behind your homework that monthly payment can be unimportant. They must demand a smallish fee on the liberation of owning this opportunity to receive persons on the telephone number. , no,. Which is if you are in search of information and facts, and all that you should come together with is generally a mobile telephone variety, your answer ought to be, the simple fact. However they can even today provide your money. Picture last but not least owning the chance to positioned a conclusion to everything tension and confusion and stress. In case the assortment is really a outlined landline amount of money, you can easily hop on on the list of no price tag directories like AnyWho and you will discover things to know free of cost instantly.<br><br>You can search by name, manage or perform a reverse phone lookup verizon. Whitened Pages of articles web-site directory website would be the most suitable option for everyone who is looking to lookup a circulated landline wide variety. Most likely you desire to receive an ending to irritating telephone calls, or uncover someone who seems to be losing out on coming from a everyday life, together with one has would be the cellular phone quantity, which could have been disconnected. Originally, as soon as the smartphone range you are searching is available, it enables you to complete a for free preliminary study to examine. It’s as standard as that! Exist for free cell cell phone directories? You just need to be online, buy this site, and sort the amount under factor. Be questionable of websites which offer to give avoid cell phone lookups for no ask for. If you get to Jog or Verizon website, you will not choose  [http://www.reversephonelookupverizon.info/ free phone lookup] a itemizing with the cellphone numbers they services.<br><br>Since you will discover the information that you just essential to know. So, in case you are privy to your proper online Verizon cell phone directory site, here’s how one can complete a simple look through. When you perform a invert browse you will definately get considerably more facts than you demanded. Also, reverse phone investigations are assisting many more portable companies conserve independent business from what could have been a ignored probability. And in addition, you may be confident that it needs to be a legal website. These online lookup directories then make the cellular phone quantities accessible to the public. In the event it expenses somewhat payment, other cases, for instance harassment, will make it crucial to find out a number of information regarding the caller, even. Subsequent this, you will be given a choice of making a an individual-time purchase or choosing a insurance plan for boundless queries. But never be familiar with the detect and home address right behind that amount, do you know the road to knowing these aspects with out seriously dialling the amount back again once [http://www.reversephonelookupverizon.info/ free phone lookup] more and wanting to know anybody, if you are from the residence of mobile amount that you are cognizant is maintained by Verizon?
'''Flow measurement''' is  the quantification of bulk [[fluid]] movement.  Flow can be measured in a variety of ways.
Positive-displacement flow meters accumulate a fixed volume of fluid and then count the number of times the volume is filled to measure flow. Other flow measurement methods rely on forces produced by the flowing stream as it overcomes a known constriction, to indirectly calculate flow. Flow may be measured by measuring the velocity of fluid over a known area.
 
== Units of measurement ==
Both gas and liquid flow can be measured in [[volumetric flow rate|volumetric]] or [[mass flow rate]]s, such as liters per second or kilograms per second. These measurements are related by the material's [[density]]. The density of a liquid is almost independent of conditions. This is not the case for gasses, the densities of which depend greatly upon pressure, temperature and to a lesser extent, composition.
 
When gases or liquids are transferred for their energy content, as in the sale of [[natural gas]], the flow rate may also be expressed in terms of energy flow, such as GJ/hour or BTU/day. The energy flow rate is the volumetric flow rate multiplied by the energy content per unit volume or mass flow rate multiplied by the energy content per unit mass. Energy flow rate is usually derived from mass or volumetric flow rate by the use of a [[flow computer]].
 
In engineering contexts, the [[volume]]tric flow rate is usually given the symbol <math>Q</math>, and the [[mass]] flow rate, the symbol <math> \dot m</math>.
 
For a fluid having density <math> \rho </math>, mass and volumetric flow rates may be related by <math> \dot m = \rho*Q </math>.
 
=== Gas ===
Gases are compressible and change volume when placed under pressure, are heated or are cooled. A volume of gas under one set of pressure and temperature conditions is not equivalent to the same gas under different conditions. References will be made to "actual" flow rate through a meter and "standard" or "base" flow rate through a meter with units such as ''acm/h'' (actual cubic meters per hour), ''kscm/h'' (thousand standard cubic meters per hour), '''LFM''' (linear feet per minute), or ''MSCFD'' (million standard cubic feet per day).
 
Gas ''mass'' flow rate can be directly measured, independent of pressure and temperature effects, with [[thermal mass flow meter]]s, Coriolis [[mass flow meter]]s, or [[mass flow controller]]s.
 
=== Liquid ===
For liquids, various units are used depending upon the application and industry, but might include gallons (U.S. liquid or imperial) per minute, liters per second, [[bushel]]s per minute or, when describing river flows, cumecs (cubic metres per second) or acre-feet per day. In oceanography a common unit to measure volume transport (volume of water transported by a current for example) is a [[sverdrup]] (Sv) equivalent to 10<sup>6</sup> m<sup>3</sup> / s.
 
== Mechanical flow meters ==
 
A bucket and a stopwatch is an analogy for the operation of a [[positive displacement meter]]
The stopwatch is started when the flow starts, and stopped when the bucket reaches its limit. The volume divided by the time gives the flow rate. For continuous measurements, we need a system of continually filling and emptying buckets to divide the flow without letting it out of the pipe.  These continuously forming and collapsing volumetric displacements may take the form of pistons reciprocating in cylinders, gear teeth mating against the internal wall of a meter or through a progressive cavity created by rotating oval gears or a helical screw.
 
===Piston meter/Rotary piston===
 
Because they are used for domestic water measurement, [[piston]] meters, also known as rotary piston or semi-positive displacement meters, are the most common flow measurement devices in the UK and are used for almost all meter sizes up to and including 40&nbsp;mm (1½ʺ). The piston meter operates on the principle of a piston rotating within a chamber of known volume. For each rotation, an amount of water passes through the piston chamber.  Through a [[gear mechanism]] and, sometimes, a [[magnetic]] drive, a needle dial and [[odometer]] type display are advanced.
 
===Gear meter===
 
====Oval gear meter====
 
An oval gear meter is a positive displacement meter that uses two or more oblong gears configured to rotate at right angles to one another, forming a T shape. Such a meter has two sides, which can be called A and B. No fluid passes through the center of the meter, where the teeth of the two gears always mesh. On one side of the meter (A), the teeth of the gears close off the fluid flow because the elongated gear on side A is protruding into the measurement chamber, while on the other side of the meter (B), a cavity holds a fixed volume of fluid in a measurement chamber. As the fluid pushes the gears, it rotates them, allowing the fluid in the measurement chamber on side B to be released into the outlet port. Meanwhile, fluid entering the inlet port will be driven into the measurement chamber of side A, which is now open. The teeth on side B will now close off the fluid from entering side B. This cycle continues as the gears rotate and fluid is metered through alternating measurement chambers. Permanent magnets in the rotating gears can transmit a signal to an electric reed switch or current transducer for flow measurement. Though claims for high performance are made, they are generally not as precise as the sliding vane design.<ref>{{cite book|last=Furness|first=Richard A.|title=Fluid flow measurement.|year=1989|publisher=Longman in association with the Institute of Measurement and Control|location=Harlow|isbn=0582031656|page=21}}</ref>
 
==== Helical gear ====
 
Helical gear flow meters get their name from the shape of their gears or rotors. These rotors resemble the shape of a helix, which is a spiral-shaped structure. As the fluid flows through the meter, it enters the compartments in the rotors, causing the rotors to rotate. Flowrate is calculated from the speed of rotation.
 
====Nutating disk meter====
This is the most commonly used measurement system for measuring water supply in houses.  The fluid, most commonly water, enters in one side of the meter and strikes the [[Nutation|nutating]] disk, which is eccentrically mounted.  The disk must then "wobble" or nutate about the vertical axis, since the bottom and the top of the disk remain in contact with the mounting chamber.  A partition separates the inlet and outlet chambers.  As the disk nutates, it gives direct indication of the volume of the liquid that has passed through the meter as volumetric flow is indicated by a gearing and register arrangement, which is connected to the disk.  It is reliable for flow measurements within 1 percent.<ref>{{Cite book| last=Holman | first=J. Alan | authorlink=J. Alan Holman | coauthors= | title=Experimental methods for engineers | year=2001 | publisher=McGraw-Hill | location=Boston  | isbn=978-0-07-366055-4 | pages=}}</ref>
 
===Variable area meter===
The [[Variable area meter|variable area (VA) meter]], also commonly called a [[rotameter]], consists of a tapered tube, typically made of glass, with a float inside that is pushed up by fluid flow and pulled down by gravity. As flow rate increases, greater viscous and pressure forces on the float cause it to rise until it becomes stationary at a location in the tube that is wide enough for the forces to balance. Floats are made in many different shapes, with spheres and spherical ellipses being the most common.  Some are designed to spin visibly in the fluid stream to aid the user in determining whether the float is stuck or not.  Rotameters are available for a wide range of liquids but are most commonly used with water or air.  They can be made to reliably measure flow down to 1% accuracy.
 
===Turbine flow meter===
The turbine flow meter (better described as an axial turbine) translates the mechanical action of the turbine rotating in the liquid flow around an axis into a user-readable rate of flow (gpm, lpm, etc.).  The turbine tends to have all the flow traveling around it.
 
The turbine wheel is set in the path of a fluid stream. The flowing fluid impinges on the turbine blades, imparting a force to the blade surface and setting the rotor in motion. When a steady rotation speed has been reached, the speed is proportional to fluid velocity.
 
Turbine flow meters are used for the measurement of natural gas and liquid flow.<ref>[[American Gas Association]] Report Number 7</ref> Turbine meters are less accurate than displacement and jet meters at low flow rates, but the measuring element does not occupy or severely restrict the entire path of flow. The flow direction is generally straight through the meter, allowing for higher flow rates and less pressure loss than displacement-type meters. They are the meter of choice for large commercial users, fire protection, and as master meters for the water distribution system. Strainers are generally required to be installed in front of the meter to protect the measuring element from gravel or other debris that could enter the water distribution system. Turbine meters are generally available for 1-1/2" to 12" or higher pipe sizes. Turbine meter bodies are commonly made of bronze, cast Iron, or ductile iron. Internal turbine elements can be plastic or non-corrosive metal alloys. they are accurate in normal working conditions to 0.2l/s however are affected greatly with dog mix interference.
 
Fire meters are a specialized type of turbine meter with approvals for the high flow rates required in fire protection systems. They are often approved by Underwriters Laboratories (UL) or Factory Mutual (FM) or similar authorities for use in fire protection. Portable turbine meters may be temporarily installed to measure water used from a [[fire hydrant]]. The meters are normally made of aluminum to be light weight, and are usually 3" capacity. Water utilities often require them for measurement of water used in construction, pool filling, or where a permanent meter is not yet installed.
 
===Woltmann meter===
The Woltmann meter comprises a rotor with helical blades inserted axially in the flow, much like a ducted fan; it can be considered a type of turbine flow meter.<ref>Arregui, Cabrera, Cobacho, [http://books.google.com/books?id=fAc8uzRfwisC&lpg=PA33&ots=Zb8l0-p209&dq=woltmann%20meter&pg=PA33  ''Integrated Water Meter Management''], p. 33</ref> They are commonly referred to as helix meters, and are
popular at larger sizes.
 
===Single jet meter===
A single jet meter consists of a simple [[impeller]] with radial vanes, impinged upon by a single jet. They are increasing in popularity in the UK at larger sizes and are commonplace in the [[European Union|EU]].
 
===Paddle wheel meter===
This is similar to the single jet meter, except that the [[impeller]] is small with respect to the width of the pipe, and projects only partially into the flow, like the paddle wheel on a Mississippi riverboat.
 
===Multiple jet meter===
A multiple jet or multijet meter is a velocity type meter which has an impeller which rotates horizontally on a vertical shaft. The impeller element is in a housing in which multiple inlet ports direct the fluid flow at the impeller causing it to rotate in a specific direction in proportion to the flow velocity. This meter works mechanically much like a single jet meter except that the ports direct the flow at the impeller equally from several points around the circumference of the element, not just one point; this minimizes uneven wear on the impeller and its shaft.
 
=== Pelton wheel ===
The [[Pelton wheel]] turbine (better described as a [[radial turbine]]) translates the mechanical action of the Pelton wheel rotating in the liquid flow around an axis into a user-readable rate of flow (gpm, lpm, etc.). The Pelton wheel tends to have all the flow traveling around it with the inlet flow focused on the blades by a jet. The original Pelton wheels were used for the [[Electricity generation|generation of power]] and consisted of a radial flow turbine with "reaction cups" which not only move with the force of the water on the face but return the flow in opposite direction using this change of fluid direction to further increase the [[Energy conversion efficiency|efficiency]] of the [[turbine]].
 
===Current meter===
[[File:Dumas Neyrpic Current Meter.JPG|thumb|right|alt=Spiral propeller connected to a streamlined housing, held by a hand. Wire leads at the right.|A propeller-type current meter as used for hydroelectric turbine testing.]]
Flow through a large [[penstock]] such as used at a [[hydroelectric power]] plant can be measured by averaging the flow velocity over the entire area. Propeller-type current meters (similar to the purely mechanical [[Ekman current meter]], but now with electronic data acquisition) can be traversed over the area of the penstock and velocities averaged to calculate total flow.  This may be on the order of hundreds of cubic meters per second. The flow must be kept steady during the traverse of the current meters. Methods for testing hydroelectric turbines are given in [[International Electrotechnical Commission|IEC]] standard 41. Such flow measurements are often commercially important when testing the efficiency of large turbines.
 
== Pressure-based meters ==
There are several types of flow meter that rely on [[Bernoulli's principle]], either by measuring the differential pressure within a constriction, or by measuring [[Static pressure|static]] and [[stagnation pressure]]s to derive the [[dynamic pressure]].
 
===Venturi meter===
A [[Venturi effect|Venturi]] meter constricts the flow in some fashion, and [[pressure sensor]]s measure the differential pressure before and within the constriction. This method is widely used to measure flow rate in the transmission of gas through [[Pipeline transport|pipelines]], and has been used since [[Roman Empire]] times.The [[coefficient of discharge]] of Venturi meter ranges from 0.93 to 0.97. The first large-scale Venturi meters to measure liquid flows were developed by [[Clemens Herschel]] who used them to measure small and large flows of water and wastewater beginning at the end of the 19th century.<ref>Herschel, Clemens. (1898). ''Measuring Water.'' Providence, RI:Builders Iron Foundry.</ref>
 
[[Image:Blende eng.png|thumb|176px|right|ISO 5167 Orifice Plate]]
 
=== Orifice plate ===
An [[orifice plate]] is a plate with a hole through it, placed in the flow; it constricts the flow, and measuring the pressure differential across the constriction gives the flow rate.  It is basically a crude form of [[Venturi meter]], but with higher energy losses. There are three type of orifice: concentric, eccentric, and segmental.<ref>Lipták, [http://books.google.com/books?id=ju0U2ItY1QsC&lpg=PA85&ots=uQP2WeGFC_&dq=orifice%20plate%20meter%20eccentric%20plate&pg=PA85 ''Flow Measurement''], p. 85</ref><ref>[[American Gas Association]] Report Number 3</ref>
 
===Dall tube===
The Dall tube is a shortened version of a Venturi meter, with a lower pressure drop than an orifice plate.  As with these flow meters the flow rate in a Dall tube is determined by measuring the pressure drop caused by  restriction in the conduit.  The pressure differential is typically measured using diaphragm pressure transducers with digital readout.  Since these meters have significantly lower permanent pressure losses than orifice meters, Dall tubes are widely used for measuring the flow rate of large pipeworks.
 
=== Pitot tube ===
A [[Pitot tube]] is a pressure measuring instrument used to measure fluid flow velocity by determining the [[stagnation pressure]].  Bernoulli's equation is used to calculate the dynamic pressure and hence fluid velocity.
Also see [[Air flow meter]].
 
=== Multi-hole pressure probe ===
Multi-hole pressure probes (also called impact probes) extend the theory of pitot tube to more than one dimension. A typical impact probe consists of three or more holes (depending on the type of probe) on the measuring tip arranged in a specific pattern. More holes allow the instrument to measure the direction of the flow velocity in addition to its magnitude (after appropriate calibration). Three holes arranged in a line allow the pressure probes to measure the velocity vector in two dimensions. Introduction of more holes, e.g. five holes arranged in a "plus" formation, allow measurement of the three-dimensional velocity vector.
Also see [[Annubar]].
 
===Cone Meters===
[[File:VW8-WN-RF-Cls300 composite.Low Res.jpg|thumb|8inch (200mm) V-Cone Flowmeter shown with ANSI 300# raised face weld neck flanges]]
Cone meters are a newer differential pressure metering device first launched in 1985 by McCrometer in Hemet, CA.  While working with the same basic principles as Ventrui and Orifice type DP meters, cone meters don’t require the same upstream and downstream piping.  The cone acts as a conditioning device as well as a differential pressure producer.  Upstream requirements are between 0-5 diameters compared to up to 44 diameters for an orifice plate or 22 diameters for a Venturi.  Because cone meters are generally of welded construction, it is recommended they are always calibrated prior to service.  Inevitably heat effects of welding cause distortions and other effects that prevent tabular data on discharge coefficients with respect to line size, beta ratio and operating Reynolds Numbers from being collected and published.  Calibrated cone meters have an uncertainty up to +/-0.5%.  Un-calibrated cone meters have an uncertainty of +/-5.0%.
 
==Optical flow meters==
Optical flow meters use light to determine flow rate. Small particles which accompany natural and industrial gases pass through two laser beams focused a short distance apart in the flow path. in a pipe by illuminating optics. Laser light is scattered when a particle crosses the first beam. The detecting optics collects scattered light on a photodetector, which then generates a pulse signal. As the same particle crosses the second beam, the detecting optics collect scattered light on a second photodetector, which converts the incoming light into a second electrical pulse. By measuring the time interval between these pulses, the gas velocity is calculated as <math>V = D/t</math> where <math>D</math> is the distance between the laser beams and <math>t</math> is the time interval.
 
Laser-based optical flow meters measure the actual speed of particles, a property which is not dependent on thermal conductivity of gases, variations in gas flow or composition of gases. The operating principle enables optical laser technology to deliver highly accurate flow data, even in challenging environments which may include high temperature, low flow rates, high pressure, high humidity, pipe vibration and acoustic noise.
 
Optical flow meters are very stable with no moving parts and deliver a highly repeatable measurement over the life of the product. Because distance between the two laser sheets does not change, optical flow meters do not require periodic calibration after their initial commissioning. Optical flow meters require only one installation point, instead of the two installation points typically required by other types of meters. A single installation point is simpler, requires less maintenance and is less prone to errors.
 
Commercially available optical flow meters are capable of measuring flow from 0.1&nbsp;m/s to faster than 100&nbsp;m/s (1000:1 turn down ratio) and have been demonstrated to be effective for the measurement of flare gases from oil wells and refineries, a contributor to atmospheric pollution.<ref>[http://www.photon-control.com/downloads/Flare_Metering_with_Optics.pdf Flare Metering with Optics]</ref>
 
==Open channel flow measurement==
 
===Level to flow===
 
The level of the water is measured at a designated point behind [[weir]] or in [[flume]] a [[hydraulic structure]] using various secondary devices (bubblers, ultrasonic, float, and differential pressure are common methods). This depth is converted to a flow rate according to a theoretical formula of the form <math>Q=KH^X</math> where <math>Q</math> is the flow rate, <math>K</math> is a constant, <math>H</math> is the water level, and <math>X</math> is an exponent which varies with the device used; or it is converted according to empirically derived level/flow data points (a "flow curve"). The flow rate can then integrated over time into volumetric flow.  Level to flow devices are commonly used to measure the flow of surface waters (springs, stream, and rivers), industrial discharges, and sewage.  Of these, [[weirs]] are used on flow streams with low solids (typically surface waters), while [[flumes]] are used on flows containing low or high solids contents.<ref name=" Hydraulic structures ">[http://help.openchannelflow.com/customer/portal/articles/949768-hydraulic-structures-primary-devices---flumes-and-weirs Hydraulic structures]</ref>
 
===Area / velocity===
The cross-sectional area of the flow is calculated from a depth measurement and the average velocity of the flow is measured directly (Doppler and propeller methods are common). Velocity times the cross-sectional area yields a flow rate which can be integrated into volumetric flow.
 
===Dye testing===
A known amount of [[dye]] (or [[salt]]) per unit time is added to a flow stream. After complete mixing, the concentration is measured. The dilution rate equals the flow rates.
 
===Acoustic Doppler velocimetry===
[[Acoustic Doppler velocimetry]] (ADV) is designed to record instantaneous velocity components at a single point with a relatively high frequency. Measurements are performed by measuring the velocity of particles in a remote sampling volume based upon the Doppler shift effect.<ref name="Chanson 2008">{{Cite book|author=[[Hubert Chanson|Chanson, Hubert]] |title=Acoustic Doppler Velocimetry (ADV) in the Field and in Laboratory: Practical Experiences |url=http://espace.library.uq.edu.au/view/UQ:159549 |publisher=in Frédérique Larrarte and Hubert Chanson, Experiences and Challenges in Sewers: Measurements and Hydrodynamics. International Meeting on Measurements and Hydraulics of Sewers IMMHS'08, Summer School GEMCEA/LCPC, Bouguenais, France, 19–21 August 2008, Hydraulic Model Report No. CH70/08, Div. of Civil Engineering, The University of Queensland, Brisbane, Australia, Dec., pp. 49–66 |year=2008 |isbn=978-1-86499-928-0}}</ref>
 
==Thermal mass flow meters==
[[Image:Thermische massendurchflussmessung en.svg|thumb|right|Temperature at the sensors varies depending upon the mass flow]]
Thermal mass flow meters generally use combinations of heated elements and temperature sensors to measure the difference between static and flowing heat transfer to a [[fluid]] and infer its flow with a knowledge of the fluid's [[specific heat]] and density. The fluid temperature is also measured and compensated for.  If the density and [[specific heat]] characteristics of the [[fluid]] are constant, the meter can provide a direct mass flow readout, and does not need any additional pressure temperature compensation over their specified range.
 
Technological progress has allowed the manufacture of thermal mass flow meters on a microscopic scale as [[Microelectromechanical systems|MEMS]] [[sensors]]; these flow devices can be used to measure flow rates in the range of nanolitres or microlitres per minute.
 
[[Thermal mass flow meter]] (also called thermal dispersion flowmeter) technology is used for compressed air, nitrogen, helium, argon, oxygen, and natural gas. In fact, most gases can be measured as long as they are fairly clean and non-corrosive. For more aggressive gases, the meter may be made out of special alloys (e.g. [[Hastelloy]]), and pre-drying the gas also helps to minimize corrosion.
 
Today, thermal mass flow meters are used to measure the flow of gases in a growing range of applications, such as chemical reactions or thermal transfer applications that are difficult for other flow metering technologies. This is because thermal mass flow meters monitor variations in one or more of the thermal characteristics (temperature, thermal conductivity, and/or specific heat) of gaseous media to define the mass flow rate.
 
===The MAF sensor===
In many late model automobiles, a mass airflow sensor (MAF sensor) is used to accurately determine the mass flowrate of intake air used in the [[internal combustion engine]]. Many such [[mass flow sensor]]s utilize a heated element and a downstream temperature sensor to indicate the air flowrate. Other sensors use a spring-loaded vane. In either case, the vehicle's [[electronic control unit]] interprets the sensor signals as a real time indication of an engine's fuel requirement.
 
== Vortex flow meters ==
Another method of flow measurement involves placing a bluff body (called a shedder bar) in the path of the fluid.  As the fluid passes this bar, disturbances in the flow called [[vortices]] are created. The vortices trail behind the cylinder, alternatively from each side of the bluff body. This vortex trail is called the [[Von Kármán vortex street]] after von Kármán's 1912 mathematical description of the phenomenon. The frequency at which these vortices alternate sides is essentially proportional to the flow rate of the fluid.  Inside, atop, or downstream of the shedder bar is a sensor for measuring the frequency of the vortex shedding. This sensor is often a [[piezoelectric]] crystal, which produces a small, but measurable, voltage pulse every time a vortex is created.  Since the [[frequency]] of such a voltage pulse is also proportional to the fluid velocity, a volumetric flow rate is calculated using the cross sectional area of the flow meter.  The frequency is measured and the flow rate is calculated by the flowmeter electronics using the equation <math>f = SV/L</math>
where <math>f</math> is the frequency of the vortices, <math>L</math> the characteristic length of the bluff body, <math>V</math> is the velocity of the flow over the bluff body, and <math>S</math> is the [[Strouhal number]], which is essentially a constant for a given body shape within its operating limits.
 
== Electromagnetic, ultrasonic and coriolis flow meters ==
[[File:Tetley's brewery, Leeds (10th May 2010) 008.jpg|thumb|right|A magnetic flow meter at the [[Tetley's Brewery]] in [[Leeds]], [[West Yorkshire]].]]
 
Modern innovations in the measurement of flow rate incorporate electronic devices that can correct for varying pressure and temperature (i.e. density) conditions, non-linearities, and for the characteristics of the fluid.
 
===Magnetic flow meters===
 
[[Magnetic flow meter]]s, often called "mag meter"s or "electromag"s, use a [[magnetic field]] applied to the metering tube, which results in a potential difference proportional to the flow velocity perpendicular to the [[flux]] lines. The potential difference is sensed by electrodes aligned perpendicular to the flow and the applied magnetic field. The physical principle at work is [[Faraday's law of induction|Faraday's law]] of [[electromagnetic induction]]. The magnetic flow meter requires a conducting fluid and a nonconducting pipe liner. The electrodes must not corrode in contact with the process fluid; some magnetic flowmeters have auxiliary transducers installed to clean the electrodes in place. The applied magnetic field is pulsed, which allows the flowmeter to cancel out the effect of stray voltage in the piping system.
 
===Non-contact electromagnetic flow meters===
 
A [[Lorentz force velocimetry]] system is called Lorentz force flowmeter (LFF). A LFF measures the integrated or bulk Lorentz force resulting from the interaction between a [[liquid metal]] in motion and an applied magnetic field. In this case the characteristic length of the magnetic field is of the same order of magnitude as the dimensions of the channel. It must be addressed that in the case where localized magnetic fields are used, it is possible to perform local velocity measurements and thus the term Lorentz force velocimeter is used.
 
===Ultrasonic flow meters (Doppler, transit time)===
 
There are two main types of [[Ultrasonic flow meter]]s: Doppler and transit time. While they both utilize ultrasound to make measurements and can be non-invasive (measure flow from outside the tube, pipe or vessel), they measure flow by very different methods.
[[Image:Tttecnology.gif|thumb|150px|Schematic view of a flow sensor.]]
Ultrasonic '''transit time''' flow meters measure the difference of the transit time of ultrasonic pulses propagating in and against the direction of flow. This time difference is a measure for the average velocity of the fluid along the path of the ultrasonic beam. By using the absolute transit times both the averaged fluid velocity and the speed of sound can be calculated. Using the two transit times <math>t_{up}</math> and <math>t_{down}</math> and the distance between receiving and transmitting transducers <math>L</math> and the inclination angle <math>\alpha</math>  one can write the equations:
 
<math>v = \frac{L}{{2\;\sin \left( \alpha  \right)}}\;\frac{{t_{up}  - t_{down} }}{{t_{up} \;t_{down} }}</math> and
<math>c = \frac{L}{2}\;\frac{{t_{up}  + t_{down} }}{{t_{up} \;t_{down} }}</math>
 
where <math>v</math> is the average velocity of the fluid along the sound path and <math>c</math> is the speed of sound.
 
With wide-beam illumination transit time ultrasound can also be used to measure volume flow independent of the cross-sectional area of the vessel or tube.<ref>{{cite journal|last=Drost|first=CJ|title=Vessel Diameter-Independent Volume Flow Measurements Using Ultrasound|journal=Proceedings of San Diego Biomedical Symposium|year=1978|volume=17|pages=299–302}}</ref>
 
Ultrasonic '''Doppler '''flow meters measure the [[Doppler shift]] resulting from reflecting an [[Ultrasound|ultrasonic]] beam off the particulates in flowing fluid. The frequency of the transmitted beam is affected by the movement of the particles; this frequency shift can be used to calculate the fluid velocity. For the Doppler principle to work there must be a high enough density of sonically reflective materials such as solid particles or [[air bubble]]s suspended in the fluid. This is in direct contrast to an ultrasonic transit time flow meter, where bubbles and solid particles reduce the accuracy of the measurement. Due to the dependency on these particles there are limited applications for Doppler flow meters. This technology is also known as [[acoustic Doppler velocimetry]].
 
One advantage of ultrasonic flow meters is that they can effectively measure the flow rates for a wide variety of fluids, as long as the speed of sound through that fluid is known. For example, ultrasonic flow meters are used for the measurement of such diverse fluids a liquid natural gas (LNG) and blood.<ref>[[American Gas Association]] Report Number 9</ref> One can also calculate the expected speed of sound for a given fluid; this can be compared to the speed of sound empirically measured by an ultrasonic flow meter for the purposes of monitoring the quality of the flow meter's measurements. A drop in quality (change in the measured speed of sound) is an indication that the meter needs servicing.
 
===Coriolis flow meters===
Using the [[Coriolis effect]] that causes a laterally vibrating tube to distort, a direct measurement of mass flow can be obtained in a [[coriolis flow meter]]. Furthermore a direct measure of the density of the fluid is obtained. Coriolis measurement can be very accurate irrespective of the type of gas or liquid that is measured; the same measurement tube can be used for [[hydrogen]] gas and [[Pitch drop experiment|bitumen]] without re[[calibration]].
 
Coriolis flow meters can be used for the measurement of natural gas flow.<ref>[[American Gas Association]] Report Number 11</ref>
 
== Laser Doppler flow measurement ==
A beam of laser light impinging on a moving particle will be partially scattered with a change in wavelength proportional to the particle's speed (the [[Doppler effect]]). A [[Laser Doppler velocimetry|laser Doppler velocimeter]] (LDV), also called a [[anemometer|laser Doppler anemometer]] (LDA), focuses a laser beam into a small volume in a flowing fluid containing small particles (naturally occurring or induced). The particles scatter the light with a Doppler shift. Analysis of this shifted wavelength can be used to directly, and with great precision, determine the speed of the particle and thus a close approximation of the fluid velocity.
 
A number of different techniques and device configurations are available for determining the Doppler shift. All use a [[photodetector]] (typically an [[avalanche photodiode]]) to convert the light into an electrical waveform for analysis. In most devices, the original laser light is divided into two beams. In one general LDV class, the two beams are made to intersect at their focal points where they [[Interference (wave propagation)|interfere]] and generate a set of straight fringes. The sensor is then aligned to the flow such that the fringes are perpendicular to the flow direction. As particles pass through the fringes, the Doppler-shifted light is collected into the photodetector. In another general LDV class, one beam is used as a reference and the other is Doppler-scattered. Both beams are then collected onto the photodetector where [[optical heterodyne detection]] is used to extract the Doppler signal.<ref>Adrian, R. J., editor (1993); ''Selected on Laser Doppler Velocimetry'', S.P.I.E. Milestone Series, ISBN 978-0-8194-1297-3</ref>
 
== Calibration ==
Even though ideally the flowmeter should be unaffected by its environment, in practice this is unlikely to be the case. Often measurement errors originate from incorrect installation or other environment dependent factors.<ref>Cornish,D (1994/5) Instrument performance.Meas.Control,27(10):323-8</ref><ref>Roger C.Baker. Flow Measurement Handbook.Cambridge university press. ISBN 978-0-521-01765-7</ref> [[In situ]] methods are used when flow meter is calibrated in the correct flow conditions.
 
=== Transit time method ===
For pipe flows a so-called transit time method is applied where a radiotracer is injected as a pulse into the measured flow. The transit time is defined with the help of radiation detectors placed on the outside of the pipe. The volume flow is obtained by multiplying the measured average fluid flow velocity by the inner pipe cross section. This reference flow value is compared with the simultaneous flow value given by the flow measurement to be calibrated.
 
The procedure is standardised (ISO 2975/VII for liquids and BS 5857-2.4 for gases). The best accredited measurement uncertainty for liquids and gases is 0.5%.<ref name="Finnish Accreditation Service">[http://www.mikes.fi/Scopes/K028_M09_2008_k01.htm Finnish Accreditation Service]</ref>
*[http://www.indmeas.com/sendfile?fid=110 Transit time animation]
 
===Tracer dilution method===
The radiotracer dilution method is used to calibrate open channel flow measurements. A solution with a known tracer concentration is injected at a constant known velocity into the channel flow. Downstream where the tracer solution is thoroughly mixed over the flow cross section, a continuous sample is taken and its tracer concentration in relation to that of the injected solution is determined. The flow reference value is determined by using the tracer balance condition between the injected tracer flow and the diluting flow..
 
The procedure is standardised (ISO 9555-1 and ISO 9555-2 for liquid flow in open channels). The best accredited measurement uncertainty is 1%.<ref name="Finnish Accreditation Service"/>
*[http://www.indmeas.com/sendfile?fid=113 Tracer dilution animation]
 
== See also ==
*[[Air flow meter]]
*[[Airspeed indicator]]
*[[Annubar]]
*[[Automatic meter reading]]
*[[Flow meter error]]
*[[Ford viscosity cup]]
*[[Gas meter]]
*[[Laser Doppler velocimetry]]
*[[Mass flow meter]]
*[[Mass flow rate]]
*[[Orifice plate]]
* [[Primary flow element]]
*[[Stream gauge]]
*[[Thorpe tube flowmeter]]
*[[Volumetric flow rate]]
*[[Water meter]]
 
==References==
{{Reflist|33em}}
 
{{DEFAULTSORT:Flow Measurement}}
[[Category:Fluid dynamics]]
[[Category:Measurement]]
[[Category:Medical ultrasonography]]

Revision as of 07:16, 11 February 2014

But how do you make a change? This can be a bad idea because of the fact these types of web sites are actually not very very good in reality. Once you discover out in case the cell cell phone number is available, the net webpage can tell you what metropolis and status the telephone wide range is produced by - to make sure more additional this can be fundamentally the cell phone number you desire to get information regarding. In this fashion, it happens to be easy to track down the person that may be intending to menace you with a variety of pranks. The charge for the a particular-time research is merely under $15, that is surely minimal and according to the factors behind your homework that monthly payment can be unimportant. They must demand a smallish fee on the liberation of owning this opportunity to receive persons on the telephone number. , no,. Which is if you are in search of information and facts, and all that you should come together with is generally a mobile telephone variety, your answer ought to be, the simple fact. However they can even today provide your money. Picture last but not least owning the chance to positioned a conclusion to everything tension and confusion and stress. In case the assortment is really a outlined landline amount of money, you can easily hop on on the list of no price tag directories like AnyWho and you will discover things to know free of cost instantly.

You can search by name, manage or perform a reverse phone lookup verizon. Whitened Pages of articles web-site directory website would be the most suitable option for everyone who is looking to lookup a circulated landline wide variety. Most likely you desire to receive an ending to irritating telephone calls, or uncover someone who seems to be losing out on coming from a everyday life, together with one has would be the cellular phone quantity, which could have been disconnected. Originally, as soon as the smartphone range you are searching is available, it enables you to complete a for free preliminary study to examine. It’s as standard as that! Exist for free cell cell phone directories? You just need to be online, buy this site, and sort the amount under factor. Be questionable of websites which offer to give avoid cell phone lookups for no ask for. If you get to Jog or Verizon website, you will not choose free phone lookup a itemizing with the cellphone numbers they services.

Since you will discover the information that you just essential to know. So, in case you are privy to your proper online Verizon cell phone directory site, here’s how one can complete a simple look through. When you perform a invert browse you will definately get considerably more facts than you demanded. Also, reverse phone investigations are assisting many more portable companies conserve independent business from what could have been a ignored probability. And in addition, you may be confident that it needs to be a legal website. These online lookup directories then make the cellular phone quantities accessible to the public. In the event it expenses somewhat payment, other cases, for instance harassment, will make it crucial to find out a number of information regarding the caller, even. Subsequent this, you will be given a choice of making a an individual-time purchase or choosing a insurance plan for boundless queries. But never be familiar with the detect and home address right behind that amount, do you know the road to knowing these aspects with out seriously dialling the amount back again once free phone lookup more and wanting to know anybody, if you are from the residence of mobile amount that you are cognizant is maintained by Verizon?