|
|
Line 1: |
Line 1: |
| This is a list of articles that are considered [[real analysis]] topics.
| | == 2、しかし甘いNalanのレートで唯一10メートル、間の == |
|
| |
|
| ==General topics==
| | シャオヤンは攻撃を開始 [http://www.nnyagdev.org/sitemap.xml http://www.nnyagdev.org/sitemap.xml]!<br>2、しかし甘いNalanのレートで唯一10メートル、間の<br>の距離が、それは今、一つだけの間でフラッシュ身長わずか数秒で、攻撃範囲、ブレード振り子にある鋭い破断風Jiangangで、シャオヤントリッキーHenlaが胸を刺す一般、穴のうち、毒蛇のような [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-4.html カシオ ソーラー電波腕時計]。<br><br>が完全に神秘的なハンドル重い足のうちが、ために重い足の神秘的な外無関心瞳絶えず拡大し、先端、シャオヤンの手のひらを見て、体が執念深い身悶えするだけでなく、現時点では経絡に宙返りをうなっ強さの感覚を満たし、最大シャオヤンの体内に残る [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-6.html 腕時計 メンズ casio]。<br>その中<br>はライトシアン「色」は、ブレードが地面源獣に胸、シャオヤン最終的にいくつかのアクション、キックの横Henti「プラグ」の前で半分足に到達しようとしているKazamaki小包の本質である徒歩では、体が急に軽量Nalanは甘い鋭いことを避けた、0 [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-12.html カシオ 腕時計 ソーラー].5メートルを残した |
| ===[[Limit (mathematics)|Limits]]===
| | 相关的主题文章: |
| | <ul> |
| | |
| | <li>[http://hockeynuts.jp/cgi-bin/epad/epad.cgi http://hockeynuts.jp/cgi-bin/epad/epad.cgi]</li> |
| | |
| | <li>[http://gempakz.org/index.php?item/create_form/1 http://gempakz.org/index.php?item/create_form/1]</li> |
| | |
| | <li>[http://www.jlywx.com/plus/feedback.php?aid=29 http://www.jlywx.com/plus/feedback.php?aid=29]</li> |
| | |
| | </ul> |
|
| |
|
| *[[Limit of a sequence]]
| | == 声をきしまされ、甲高い悲鳴、空のこの部分に空を鳴り響い == |
| **[[Subsequential limit]] – the limit of some subsequence
| |
| *[[Limit of a function]] (''see [[List of limits]] for a list of limits of common functions)
| |
| **[[One-sided limit]] – either of the two limits of functions of real variables x, as x approaches a point from above or below
| |
| **[[Squeeze theorem]] – confirms the limit of a function via comparison with two other functions
| |
| **[[Big O notation]] – used to describe the limiting behavior of a function when the argument tends towards a particular value or infinity, usually in terms of simpler functions
| |
|
| |
|
| ===[[Sequence]]s and [[Series (mathematics)|series]]===
| | 声をきしまされ、甲高い悲鳴、空のこの部分に空を鳴り響い。<br><br>第一千二百五十8章悲惨な運命<br><br>第一千二百五十章悲惨な運命<br><br>古い悪魔のスターの座甲高い悲鳴が聞こえ、最初ためらっシャオヤン、すぐにここで実際に強いがあり、家の魂を隠されて冷たい心を、押し込んだ [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-10.html casio電波腕時計]?そして、この人のアイデンティティは、いない家の魂は、古い悪魔は大声で大人のスターの座を呼び出す必要があったリビアさえも<br><br>「家の魂が本当に準備してくるようだ! [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-4.html カシオ ソーラー電波腕時計] '<br><br>シャオヤンの目が点滅して、この方法を渡すという考えを気にし、激しいマンはどんな、初めて今回、もう一度彼の古い悪魔で敵が言うスターダム殺す [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-2.html 腕時計 casio]!、移動を総なめにしたん<br><br>「笑う! [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-9.html カシオ 腕時計 チタン] '<br><br>心が殺すことを意図しており、黒色の「色」アイリスの拡散速度が急激に加速していることを、近くの恐ろしい吸引、Haideが古い悪魔の知恵をスターダムサージング、ますます甲高い悲鳴を恐れている [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-12.html カシオ 時計 電波]。 |
| (''see also [[list of mathematical series]]'')
| | 相关的主题文章: |
| | <ul> |
| | |
| | <li>[http://www.edu118.com/plus/feedback.php?aid=919 http://www.edu118.com/plus/feedback.php?aid=919]</li> |
| | |
| | <li>[http://www.dyscjxh.org/bbs/home.php?mod=space&uid=816628 http://www.dyscjxh.org/bbs/home.php?mod=space&uid=816628]</li> |
| | |
| | <li>[http://711vps.net/bbs/forum.php?mod=viewthread&tid=163625&extra= http://711vps.net/bbs/forum.php?mod=viewthread&tid=163625&extra=]</li> |
| | |
| | </ul> |
|
| |
|
| *[[Arithmetic progression]] – a sequence of numbers such that the difference between the consecutive terms is constant
| | == カウント == |
| **[[Generalized arithmetic progression]] – a sequence of numbers such that the difference between consecutive terms can be one of several possible constants
| |
| *[[Geometric progression]] – a sequence of numbers such that each consecutive term is found by multiplying the previous one by a fixed non-zero number
| |
| *[[Harmonic progression (mathematics)|Harmonic progression]] – a sequence formed by taking the reciprocals of the terms of an arithmetic progression
| |
| *'''Finite sequence''' – ''see [[sequence]]''
| |
| *'''Infinite sequence''' – ''see [[sequence]]''
| |
| *'''Divergent sequence''' – ''see [[limit of a sequence]] or [[divergent series]]''
| |
| *'''Convergent sequence''' – ''see [[limit of a sequence]] or [[convergent series]]''
| |
| **[[Cauchy sequence]] – a sequence whose elements become arbitrarily close to each other as the sequence progresses
| |
| *[[Convergent series]] – a series whose sequence of partial sums converges
| |
| *[[Divergent series]] – a series whose sequence of partial sums diverges
| |
| *[[Power series]] – a series of the form <math>f(x) = \sum_{n=0}^\infty a_n \left( x-c \right)^n = a_0 + a_1 (x-c)^1 + a_2 (x-c)^2 + a_3 (x-c)^3 + \cdots</math>
| |
| **[[Taylor series]] – a series of the form <math>f(a)+\frac {f'(a)}{1!} (x-a)+ \frac{f''(a)}{2!} (x-a)^2+\frac{f^{(3)}(a)}{3!}(x-a)^3+ \cdots. </math>
| |
| ***'''Maclaurin series''' – ''see [[Taylor series]]''
| |
| ****[[Binomial series]] – the Maclaurin series of the function ''f'' given by ''f''(''x'') ''='' (1 + ''x'')<sup> ''α''</sup>
| |
| *[[Telescoping series]]
| |
| *[[Alternating series]]
| |
| *[[Geometric series]]
| |
| **[[Divergent geometric series]]
| |
| *[[Harmonic series (mathematics)|Harmonic series]]
| |
| *[[Fourier series]]
| |
| *[[Lambert series]]
| |
|
| |
|
| ====[[Summation]] methods==== | | カウント [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-13.html カシオ アナログ 腕時計]。<br><br>リールキンタナの深紅、単に一般的に赤い「色」クリスタルのように見えるが、非常に豪華な、シャオヤンの手のひらがゆっくりと広がり、リール眉から注ぐ目Weibi、魂の力、そして最後にされてリールに侵入 [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-9.html カシオ 腕時計 チタン]。<br>リールへのシャオヤン魂力で<br>接触、赤色の「色」レイ·チョン盛うち、火のような世界のタッチ、シャオヤン魂の視野で登場<br>ここ<br>は溶岩湖、一定の撹拌、すべてのバーストと湖で光る気泡で、温ミストのヒントから上昇され、シャオヤンの心透明な、ここに魂の力を使用しながら思い出したリールメーカーは、特別です一緒に練習、戦いの技術の高レベルのいくつか、このような使用の魂の燃焼リールは感情の一部に対してスキルを戦って、その所有者の間で含まれており、人々の後に練習を焼くために使用するだけでなく、間接的な継承にはいくつかの経験にするだけでなく、へ簡単に思える [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-13.html カシオ 腕時計 ソーラー 電波]。 |
| | 相关的主题文章: |
| | <ul> |
| | |
| | <li>[http://bbs.kingsoftgames.com/forum.php?mod=viewthread&tid=869917 http://bbs.kingsoftgames.com/forum.php?mod=viewthread&tid=869917]</li> |
| | |
| | <li>[http://bbs.e5zj.com/home.php?mod=space&uid=259537 http://bbs.e5zj.com/home.php?mod=space&uid=259537]</li> |
| | |
| | <li>[http://www.ryowa.net/cgi/bkn_v1.cgi http://www.ryowa.net/cgi/bkn_v1.cgi]</li> |
| | |
| | </ul> |
|
| |
|
| *[[Cesàro summation]]
| | == 2通りの音に続いて == |
| *[[Euler summation]]
| |
| *[[Lambert summation]]
| |
| *[[Borel summation]]
| |
| *[[Summation by parts]] – transforms the summation of products of into other summations
| |
| *[[Cesàro mean]]
| |
| *[[Abel's summation formula]]
| |
|
| |
|
| ====More advanced topics====
| | シャオヤン魂の力はすべての材料が分離される紫色の火の「運動」制御、タイトな三脚ストーブを渦巻く炎を見つめて開いて、[中燻製、とゆっくりと密接な、それが近づくにつれて、彼らは最終的には徐々持っていた収束傾向 [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-9.html 電波時計 casio]...<br><br>巨大な砂時計、砂は、急激なダウン注いだ。<br><br>「打ち鳴らす! '<br>瞬間に<br>、正方形の上に音さわやかなショット三脚は、鳴った [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-4.html カシオ ソーラー電波腕時計]。<br><br>劉Lingさんは、ラウンドダン [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-12.html 腕時計 メンズ casio] '薬'アウト 'ショット'を飛ん一枚、パンカバーが空に爆弾「ショット」で、三脚ヤシのリメイクオーブンの上部にリードを奪った、その後、彼はの手に授与つかん得意げな顔上記の、それは隠すことは困難である。<br><br>「打ち鳴らす!は「アウト」の薬 [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-1.html カシオ 時計 メンズ] '鼎「ショット」から崔翔、反対側、リトルプリンセス繊維Shouyi趙ダン「薬」である。<br><br>「打ち鳴らす、打ち鳴らす、打ち鳴らす [http://www.ispsc.edu.ph/nav/japandi/casio-rakuten-6.html casio 腕時計 説明書]......」<br>2通りの音に続いて<br> |
| | | 相关的主题文章: |
| *[[Convolution]]
| | <ul> |
| **[[Cauchy product]] –is the discrete convolution of two sequences
| | |
| *[[Farey sequence]] – the sequence of [[completely reduced fraction]]s between 0 and 1
| | <li>[http://kumeiyuan.com/plus/view.php?aid=565432 http://kumeiyuan.com/plus/view.php?aid=565432]</li> |
| *[[Oscillation (mathematics)|Oscillation]] – is the behaviour of a sequence of real numbers or a real-valued function, which does not converge, but also does not diverge to +∞ or −∞; and is also a quantitative measure for that.
| | |
| *[[Indeterminate form]]s – algerbraic expressions gained in the context of limits. The indeterminate forms include 0<sup>0</sup>, 0/0, 1<sup>∞</sup>, ∞ − ∞, ∞/∞, 0 × ∞, and ∞<sup>0</sup>.
| | <li>[http://bbs.gisquest.com/forum.php?mod=viewthread&tid=185153 http://bbs.gisquest.com/forum.php?mod=viewthread&tid=185153]</li> |
| | | |
| ===Convergence===
| | <li>[http://www.jlsjls.com/forum.php?mod=viewthread&tid=3791 http://www.jlsjls.com/forum.php?mod=viewthread&tid=3791]</li> |
| | | |
| *[[Pointwise convergence]], [[Uniform convergence]]
| | </ul> |
| *[[Absolute convergence]], [[Conditional convergence]]
| |
| *[[Normal convergence]]
| |
| | |
| *[[Radius of convergence]]
| |
| | |
| ====[[Convergence tests]]====
| |
| | |
| *[[Integral test for convergence]]
| |
| *[[Cauchy's convergence test]]
| |
| *[[Ratio test]]
| |
| *[[Comparison test]]
| |
| *[[Root test]]
| |
| *[[Alternating series test]]
| |
| *[[Cauchy condensation test]]
| |
| *[[Abel's test]]
| |
| *[[Dirichlet's test]]
| |
| *[[Stolz–Cesàro theorem]] – is a criterion for proving the convergence of a sequence
| |
| | |
| ===[[Function (mathematics)|Functions]]===
| |
| | |
| *[[Function of a real variable]]
| |
| *[[Real multivariable function]]
| |
| *[[Continuous function]]
| |
| **[[Nowhere continuous function]]
| |
| **[[Weierstrass function]]
| |
| *[[Smooth function]]
| |
| **[[Analytic function]]
| |
| ***[[Quasi-analytic function]]
| |
| **[[Non-analytic smooth function]]
| |
| **[[Flat function]]
| |
| **[[Bump function]]
| |
| *[[Differentiable function]]
| |
| *[[Integrable function]]
| |
| **[[Square-integrable function]], [[p-integrable function]]
| |
| *[[Monotonic function]]
| |
| **[[Bernstein's theorem on monotone functions]] – states that any real-valued function on the half-line [0, ∞) that is totally monotone is a mixture of exponential functions
| |
| *[[Inverse function]]
| |
| *[[Convex function]], [[Concave function]]
| |
| *[[Singular function]]
| |
| *[[Harmonic function]]
| |
| **[[Weakly harmonic function]]
| |
| **[[Proper convex function]]
| |
| *[[Rational function]]
| |
| *[[Orthogonal function]]
| |
| *[[Implicit and explicit functions]]
| |
| **[[Implicit function theorem]] – allows relations to be converted to functions
| |
| *[[Measurable function]]
| |
| *[[Baire one star function]]
| |
| *[[Symmetric function]]
| |
| | |
| *[[Domain of a function|Domain]]
| |
| *[[Codomain]]
| |
| **[[Image (mathematics)|Image]]
| |
| *[[Support (mathematics)|Support]]
| |
| | |
| *[[Differential of a function]]
| |
| | |
| ====Continuity====
| |
| | |
| *[[Uniform continuity]]
| |
| **[[Modulus of continuity]]
| |
| **[[Lipschitz continuity]]
| |
| *[[Semi-continuity]]
| |
| *[[Equicontinuous]]
| |
| *[[Absolute continuity]]
| |
| *[[Hölder condition]] – condition for Hölder continuity
| |
| | |
| ====[[distribution (mathematics)|Distribution]]s====
| |
| | |
| *[[Dirac delta function]]
| |
| *[[Heaviside step function]]
| |
| *[[Hilbert transform]]
| |
| *[[Green's function]]
| |
| | |
| ====Variation====
| |
| | |
| *[[Bounded variation]]
| |
| *[[Total variation]]
| |
| | |
| ===[[Derivative]]s===
| |
| | |
| *[[Second derivative]]
| |
| **[[Inflection point]] – found using second derivatives
| |
| *[[Directional derivative]], [[Total derivative]], [[Partial derivative]]
| |
| | |
| ====[[Differentiation rules]]====
| |
| | |
| *[[Linearity of differentiation]]
| |
| *[[Product rule]]
| |
| *[[Quotient rule]]
| |
| *[[Chain rule]]
| |
| *[[Inverse function theorem]] – gives sufficient conditions for a function to be invertible in a neighborhood of a point in its domain, also gives a formula for the derivative of the inverse function
| |
| | |
| ====Differentiation in geometry and topology====
| |
| ''see also [[List of differential geometry topics]]'' | |
| | |
| *[[Differentiable manifold]]
| |
| *[[Differentiable structure]]
| |
| *[[Submersion (mathematics)|Submersion]] – a differentiable map between differentiable manifolds whose differential is everywhere surjective
| |
| | |
| ===[[Integral]]s===
| |
| | |
| ''(see also [[Lists of integrals]])''
| |
| | |
| *[[Antiderivative]]
| |
| **[[Fundamental theorem of calculus]] – a theorem of anitderivatives
| |
| *[[Multiple integral]]
| |
| *[[Iterated integral]]
| |
| *[[Improper integral]]
| |
| **[[Cauchy principal value]] – method for assigning values to certain improper integrals
| |
| *[[Line integral]]
| |
| | |
| *[[Anderson's theorem]] – says that the integral of an integrable, symmetric, unimodal, non-negative function over an ''n''-dimensional convex body (''K'') does not decrease if ''K'' is translated inwards towards the origin
| |
| | |
| ====Integration and measure theory====
| |
| ''see also [[List of integration and measure theory topics]]''
| |
| | |
| *[[Riemann integral]], [[Riemann sum]]
| |
| **[[Riemann–Stieltjes integral]]
| |
| *[[Darboux integral]]
| |
| *[[Lebesgue integration]]
| |
| | |
| ==Fundamental theorems==
| |
| | |
| *'''[[Monotone convergence theorem]]''' – relates monotonicity with convergence
| |
| *'''[[Intermediate value theorem]]''' – states that for each value between the least upper bound and greatest lower bound of the image of a continuous function there is at least one point in its domain that the function maps to that value
| |
| *'''[[Rolle's theorem]]''' – essentially states that a differentiable function which attains equal values at two distinct points must have a point somewhere between them where the first derivative is zero
| |
| *'''[[Mean value theorem]]''' – that given an arc of a differentiable curve, there is at least one point on that arc at which the derivative of the curve is equal to the "average" derivative of the arc
| |
| *'''[[Taylor's theorem]]''' – gives an approximation of a k times differentiable function around a given point by a ''k''-th order Taylor-polynomial.
| |
| *'''[[L'Hôpital's rule]]''' – uses derivatives to help evaluate limits involving indeterminate forms
| |
| *'''[[Abel's theorem]]''' – relates the limit of a power series to the sum of its coefficients
| |
| *'''[[Lagrange inversion theorem]]''' – gives the taylor series of the inverse of an analytic function
| |
| *'''[[Darboux's theorem (analysis)|Darboux's theorem]]''' – states that all functions that result from the differentiation of other functions have the intermediate value property: the image of an interval is also an interval
| |
| *'''[[Heine–Borel theorem]]''' – sometimes used as the defining property of compactness
| |
| *'''[[Bolzano–Weierstrass theorem]]''' – states that each bounded sequence in '''R'''<sup>''n''</sup> has a convergent subsequence.
| |
| | |
| ==Foundational topics==
| |
| ===[[Number]]s===
| |
| ====[[Real number]]s====
| |
| | |
| *[[Construction of the real numbers]]
| |
| **[[Natural number]]
| |
| **[[Integer]]
| |
| **[[Rational number]]
| |
| **[[Irrational number]]
| |
| *[[Completeness of the real numbers]]
| |
| *[[Least-upper-bound property]]
| |
| *[[Real line]]
| |
| **[[Extended real number line]]
| |
| **[[Dedekind cut]]
| |
| | |
| ====Specific numbers====
| |
| | |
| *[[0 (number)|0]]
| |
| *[[1 (number)|1]]
| |
| **[[0.999...]]
| |
| *[[Infinity]]
| |
| | |
| ===[[Set (mathematics)|Sets]]===
| |
| | |
| *[[Open set]]
| |
| *[[Neighbourhood (mathematics)|Neighbourhood]]
| |
| *[[Cantor set]]
| |
| *[[Derived set (mathematics)]]
| |
| | |
| *[[Completeness (order theory)|Completeness]]
| |
| *[[Limit superior and limit inferior]]
| |
| **[[Supremum]]
| |
| **[[Infimum]]
| |
| | |
| *[[Interval (mathematics)|Interval]]
| |
| **[[Partition of an interval]]
| |
| | |
| ===[[Map (mathematics)|Maps]]===
| |
| | |
| *[[Contraction mapping]]
| |
| *[[Metric map]]
| |
| *[[Fixed point (mathematics)|Fixed point]] – a point of a function that maps to itself
| |
| | |
| ==Applied mathematical tools== | |
| ===[[Infinite expression (mathematics)|Infinite expressions]]===
| |
| | |
| *[[Continued fraction]]
| |
| *[[Series (mathematics)|Series]]
| |
| *[[Infinite product]]s
| |
| | |
| ===[[Inequality (mathematics)|Inequalities]]=== | |
| ''See [[list of inequalities]]''
| |
| | |
| *[[Triangle inequality]]
| |
| *[[Bernoulli's inequality]]
| |
| *[[Cauchy-Schwarz inequality]]
| |
| *[[Triangle inequality]]
| |
| *[[Hölder's inequality]]
| |
| *[[Minkowski inequality]]
| |
| *[[Jensen's inequality]]
| |
| *[[Chebyshev's inequality]]
| |
| *[[Inequality of arithmetic and geometric means]]
| |
| | |
| ===[[Mean]]s===
| |
| *[[Generalized mean]]
| |
| *[[Pythagorean means]]
| |
| **[[Arithmetic mean]]
| |
| **[[Geometric mean]]
| |
| **[[Harmonic mean]]
| |
| *[[Geometric-harmonic mean]]
| |
| *[[Arithmetic-geometric mean]]
| |
| *[[Weighted mean]]
| |
| *[[Quasi-arithmetic mean]]
| |
| | |
| ===[[Orthogonal polynomials]]===
| |
| | |
| *[[Classical orthogonal polynomials]]
| |
| **[[Hermite polynomials]]
| |
| **[[Laguerre polynomials]]
| |
| **[[Jacobi polynomials]]
| |
| **[[Gegenbauer polynomials]]
| |
| **[[Legendre polynomials]]
| |
| | |
| ===[[Space (mathematics)|Spaces]]===
| |
| | |
| *[[Euclidean space]]
| |
| *[[Metric space]]
| |
| **[[Banach fixed point theorem]] – guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces, provides method to find them
| |
| **[[Complete metric space]]
| |
| *[[Topological space]]
| |
| **[[Function space]]
| |
| ***[[Sequence space]]
| |
| *[[Compact space]]
| |
| | |
| ===[[Measure (mathematics)|Measures]]===
| |
| | |
| *[[Lebesgue measure]]
| |
| *[[Outer measure]]
| |
| **[[Hausdorff measure]]
| |
| | |
| *[[Dominated convergence theorem]] – provides sufficient conditions under which two limit processes commute, namely Lebesgue integration and almost everywhere convergence of a sequence of functions.
| |
| | |
| ===[[Field of sets]]===
| |
| | |
| *[[Sigma-algebra]]
| |
| | |
| ==Historical figures==
| |
| | |
| *[[Michel Rolle]] (1652–1719)
| |
| *[[Brook Taylor]] (1685–1731)
| |
| *[[Leonhard Euler]] (1707–1783)
| |
| *[[Joseph-Louis Lagrange]] (1736–1813)
| |
| *[[Joseph Fourier]] (1768–1830)
| |
| *[[Bernard Bolzano]] (1781–1848)
| |
| *[[Augustin Cauchy]] (1789–1857)
| |
| *[[Niels Henrik Abel]] (1802–1829)
| |
| *[[Peter Gustav Lejeune Dirichlet]] (1805–1859)
| |
| *[[Karl Weierstrass]] (1815–1897)
| |
| *[[Eduard Heine]] (1821–1881)
| |
| *[[Pafnuty Chebyshev]] (1821–1894)
| |
| *[[Leopold Kronecker]] (1823–1891)
| |
| *[[Bernhard Riemann]] (1826–1866)
| |
| *[[Richard Dedekind]] (1831–1916)
| |
| *[[Rudolf Lipschitz]] (1832–1903)
| |
| *[[Camille Jordan]] (1838–1922)
| |
| *[[Jean Gaston Darboux]] (1842–1917)
| |
| *[[Georg Cantor]] (1845–1918)
| |
| *[[Ernesto Cesàro]] (1859–1906)
| |
| *[[Otto Hölder]] (1859–1937)
| |
| *[[Hermann Minkowski]] (1864–1909)
| |
| *[[Alfred Tauber]] (1866–1942)
| |
| *[[Felix Hausdorff]] (1868–1942)
| |
| *[[Émile Borel]] (1871–1956)
| |
| *[[Henri Lebesgue]] (1875–1941)
| |
| *[[Wacław Sierpiński]] (1882–1969)
| |
| *[[Johann Radon]] (1887–1956)
| |
| *[[Karl Menger]] (1902–1985)
| |
| | |
| ==[[Mathematical analysis|Related fields of analysis]]==
| |
| | |
| *'''[[Asymptotic analysis]]''' – studies a method of describing limiting behaviour
| |
| *'''[[Convex analysis]]''' – studies the properties of convex functions and convex sets
| |
| **[[List of convexity topics]]
| |
| *'''[[Harmonic analysis]]''' – studies the representation of functions or signals as superpositions of basic waves
| |
| **[[List of harmonic analysis topics]]
| |
| *'''[[Fourier analysis]]''' – studies Fourier series and Fourier transforms
| |
| **[[List of fourier analysis topics]]
| |
| **[[List of Fourier-related transforms]]
| |
| *'''[[Complex analysis]]''' – studies the extension of real analysis to include complex numbers
| |
| *'''[[Functional analysis]]''' – studies vector spaces endowed with limit-related structures and the linear operators acting upon these spaces
| |
| | |
| [[Category:Real analysis| ]]
| |
| [[Category:Outlines|Real analysis]]
| |
| [[Category:Mathematics-related lists]]
| |