Functional equation: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Donner60
Reverted good faith edits by 124.170.241.132 (talk): Notability not a criterion; relevancy and accuracy not challenged. (TW)
Line 1: Line 1:
In [[mathematics]], '''schemes''' connect the fields of [[algebraic geometry]], [[commutative algebra]] and [[number theory]]. Schemes were introduced by [[Alexander Grothendieck]]{{when|date=January 2014}} so as to broaden the notion of [[algebraic variety]]; some consider schemes to be the basic object of study of modern algebraic geometry. Technically, a scheme is a [[topological space]] together with [[commutative ring]]s for all of its open sets, which arises from gluing together [[spectrum of a ring|spectra]] (spaces of [[prime ideal]]s) of commutative rings along their open subsets.


== Types of schemes ==
There are many ways one can qualify a scheme. According to a basic idea of Grothendieck, conditions should be applied to a ''morphism'' of schemes. Any scheme ''S'' has a unique morphism to Spec('''Z'''), so this attitude, part of the ''[[Grothendieck's relative point of view|relative point of view]]'', doesn't lose anything.


For detail on the development of scheme theory, which quickly becomes technically demanding, see first [[glossary of scheme theory]].
[http://arts-services.com/friends.asp?sac-a-dos-longchamp Sac à Dos Longchamp] Longchamp Le Pliage Travel lkQVI Yu è descritto come asiatico, 5 con un sottile costruire, £ 125, corti capelli neri con riflessi biondi sotto. Lei è stato visto l'ultima volta indossava un grigio American Apparel una felpa con cappuccio, pantaloni neri e scarpe mocassino nero, e lei a volte porta gli occhiali. [http://arts-services.com/friends.asp?sac-longchamp-cosmetique Sac Longchamp CosméTique] Sac Longchamp Jeremy Scott qluJS Sex and the City Carrie Bradshaw per attirare l'attenzione al mondo delle Manolo Blahnik, ma a parte l'ossessione per le scarpe di carattere, Sarah Jessica Parker è stata associata con la marca. È interessante notare che, ancora di più, un'attrice che vuole cori alla fine degli ultimi tempi, perché ha firmato un disegno di una collezione di Manolo Blahnik! Tutte le persone in TV.. [http://arts-services.com/friends.asp?sac-longchamp-great-wall Sac Longchamp Great Wall] Sac Longchamp Empreinte knzdP Questo è vero sia per gli uomini e le donne. Allora perché non fidarsi mio consiglio, e avete bisogno di farti un paio di Mephisto camminare? Quindi non fidarti di me! Ogni anno, oltre un milione di paia di scarpe vendute queste meravigliose solo in Europa.. [http://arts-services.com/friends.asp?longchamp-le-pliage-arbre Longchamp Le Pliage Arbre] Sac Longchamp Jeremy Scott XBXvc Ha un'idea sbagliata delle incazzare i circa 100 le persone intorno a lui dopo Larry Fitzgerald segna un touchdown con 4:47 sinistra nel secondo trimestre per renderlo 10:09 Cardinali. Bills fan 0. [http://arts-services.com/friends.asp?sac-longchamp-jacquard Sac Longchamp Jacquard] Sac Longchamp Cosmétique pQNao Rita dice che ha rubato soddisfatto fino a quando ha finito decorare la casa, ha ottenuto un lavoro part-time e perso cinque chili. E qui sta il problema.<br><br>[http://arts-services.com/friends.asp?sac-longchamp-great-wall Sac Longchamp Great Wall] Sac Longchamp Empreinte anzpL Tango, Paz dice Hkan contribuire a una perdita. Silicon Valley EH popolato e gestito da tutti i cittadini irlandesi che hanno un kjrlighetsforhold tastiera dice che ho una voce profonda che maschera un PS: Accent. [http://arts-services.com/friends.asp?sac-longchamp-brode Sac Longchamp Brodé] Sac Longchamp brodé ibVzz Qui è dove probabilmente mi discosto dalla maggioranza, mi sento ritiene che gli insegnanti dovrebbero essere ben vestiti casual o vestito. Mi vesto in questo modo e trovo che non si traduca in un più alto livello di rispetto da parte [http://Www.Dict.cc/englisch-deutsch/dei+genitori.html dei genitori] e degli studenti. [http://arts-services.com/friends.asp?sac-longchamp-tire-tracks Sac Longchamp Tire Tracks] Sac Longchamp Pliage 1623 WTzzR Anche se molte opere si appoggia su tali informazioni personali, mentre altri sono nella storia, come il Cat Mazza bastone per la difesa, che si è in combattimento filmati dalla seconda guerra mondiale in Afghanistan per i punti maglia digitali. Artisti coinvolgere anche le loro comunità circostanti.
 
== History and motivation ==
The algebraic geometers of the [[Italian school of algebraic geometry|Italian school]] had often used the somewhat foggy concept of "[[generic point]]" when proving statements about [[algebraic varieties]]. What is true for the generic point is true for all points of the variety except a small number of special points. In the 1920s, [[Emmy Noether]] had first suggested a way to clarify the concept: start with the coordinate ring of the variety (the ring of all polynomial functions defined on the variety); the [[maximal ideal]]s of this ring will correspond to ordinary points of the variety (under suitable conditions), and the non-maximal [[prime ideal]]s will correspond to the various generic points, one for each subvariety. By taking all prime ideals, one thus gets the whole collection of ordinary and generic points. Noether did not pursue this approach.
 
In the 1930s, [[Wolfgang Krull]] turned things around and took a radical step: start with ''any'' commutative ring, consider the set of its prime ideals, turn it into a [[topological space]] by introducing the [[Zariski topology]], and study the algebraic geometry of these quite general objects. Others did not see the point of this generality and Krull abandoned it.
 
[[André Weil]] was especially interested in algebraic geometry over [[finite field]]s and other rings. In the 1940s he returned to the prime ideal approach; he needed an ''abstract variety'' (outside [[projective space]]) for foundational reasons, particularly for the existence in an algebraic setting of the [[Jacobian variety]]. In Weil's main foundational book (1946), generic points are constructed by taking points in a very large [[algebraically closed]] field, called a ''universal domain''.
 
In 1944 [[Oscar Zariski]] defined an abstract [[Zariski–Riemann space]] from the function field of an [[algebraic variety]], for the needs of [[birational geometry]]: this is like a [[direct limit]] of ordinary varieties (under 'blowing up'), and the construction, reminiscent of [[locale theory]], used [[valuation ring]]s as points.
 
In the 1950s, [[Jean-Pierre Serre]], [[Claude Chevalley]] and [[Masayoshi Nagata]], motivated largely by the [[Weil conjectures]] relating [[number theory]] and [[algebraic geometry]], pursued similar approaches with prime ideals as points. According to [[Pierre Cartier (mathematician)|Pierre Cartier]], the word ''scheme'' was first used in the 1956 Chevalley Seminar, in which Chevalley was pursuing Zariski's ideas; and it was [[André Martineau]] who suggested to Serre the move to the current [[spectrum of a ring]] in general.
 
==Modern definitions of the objects of algebraic geometry==
{{see also|Spectrum of a ring}}
[[Alexander Grothendieck]] then gave the decisive definition, bringing to a conclusion a generation of experimental suggestions and partial developments.{{fact|date=January 2014}}  He defined the [[spectrum of a ring|spectrum]] of a commutative ring as the space of prime ideals with Zariski topology, but augments it with a [[sheaf (mathematics)|sheaf]] of rings: to every Zariski-open set he assigns a commutative ring, thought of as the ring of "polynomial functions" defined on that set. These objects are the "affine schemes"; a general scheme is then obtained by "gluing together" several such affine schemes, in analogy to the fact that general varieties can be obtained by gluing together affine varieties.
 
The generality of the scheme concept was initially criticized: some schemes are removed from having straightforward geometrical interpretation, which made the concept difficult to grasp. However, admitting arbitrary schemes makes the whole category of schemes better-behaved. Moreover, natural considerations regarding, for example, [[moduli space]]s, lead to schemes that are "non-classical". The occurrence of these schemes that are not varieties (nor built up simply from varieties) in problems that could be posed in classical terms made for the gradual acceptance of the new foundations of the subject.
 
Subsequent work on [[algebraic space]]s and [[algebraic stack]]s by [[Pierre Deligne|Deligne]], [[David Mumford|Mumford]], and [[Michael Artin]], originally in the context of [[moduli problem]]s, has further enhanced the geometric flexibility of modern algebraic geometry.  Grothendieck advocated certain types of [[ringed topos]]es as generalisations of schemes, and following his proposals [[relative scheme]]s over ringed toposes were developed by M. Hakim. Recent ideas about [[higher algebraic stack]]s and homotopical or [[derived algebraic geometry]] have regard to further expanding the algebraic reach of geometric intuition, bringing algebraic geometry closer in spirit to [[homotopy theory]].
 
== Definitions ==
An [[affine scheme]] is a [[locally ringed space]] isomorphic to the spectrum of a commutative ring.  We denote the spectrum of a commutative ring ''A'' by Spec(''A'').  A '''scheme''' is a locally ringed space ''X'' admitting a covering by open sets ''U''<sub>''i''</sub>, such that the restriction of the structure sheaf ''O''<sub>''X''</sub> to each ''U''<sub>''i''</sub> is an affine scheme. Therefore one may think of a scheme as being covered by "coordinate charts" of affine schemes. The above formal definition means exactly that schemes are obtained by glueing together affine schemes for the [[Zariski topology]].
 
In the early days, this was called a ''prescheme'', and a scheme was defined to be a [[separated scheme|separated]] prescheme.  The term prescheme has fallen out of use, but can still be found in older books, such as [[Grothendieck]]'s [[Éléments de géométrie algébrique]] and [[David Mumford|Mumford]]'s {{doi-inline|10.1007/b62130|''Red Book''}}.
 
== The category of schemes ==
Schemes form a [[category theory|category]] if we take as morphisms the morphisms of [[Ringed space|locally ringed space]]s.
 
Morphisms from schemes to affine schemes are completely understood in terms of ring homomorphisms by the following contravariant [[adjoint functor|adjoint pair]]: For every scheme ''X'' and every commutative ring ''A'' we have a natural equivalence
:<math>\operatorname{Hom}_{\rm Schemes}(X, \operatorname{Spec}(A)) \cong \operatorname{Hom}_{\rm CRing}(A, {\mathcal O}_X(X)).</math>
 
Since '''[[integer|Z]]''' is an [[initial object]] in the [[category of rings]], the category of schemes has Spec('''Z''') as a [[final object]].
 
The category of schemes has finite [[product (category theory)|products]], but one has to be careful: the underlying topological space of the product scheme of (''X'', ''O<sub>X</sub>'') and (''Y'', ''O<sub>Y</sub>'') is normally ''not'' equal to the [[product topology|product]] of the topological spaces ''X'' and ''Y''. In fact, the underlying topological space of the product scheme often has more points than the product of the underlying topological spaces. For example, if ''K'' is the field with nine elements, then Spec&nbsp;''K'' × Spec&nbsp;''K'' ≈ Spec&nbsp;(''K''&nbsp;&otimes;<sub>'''Z'''</sub>&nbsp;''K'') ≈ Spec&nbsp;(''K''&nbsp;&otimes;<sub>'''Z'''/3'''Z'''</sub>&nbsp;''K'') ≈ Spec&nbsp;(''K''&nbsp;×&nbsp;''K''), a set with two elements, though Spec&nbsp;''K'' has only a single element.
 
For a scheme <math>S</math>, the category of schemes over <math>S</math> has also [[fibre product]]s, and since it has a final object <math>S</math>, it follows that it has finite [[Limit (category theory)|limit]]s.
 
== ''O<sub>X</sub>'' modules ==
Just as the ''R''-[[module (mathematics)|modules]] are central in [[commutative algebra]] when studying the [[commutative ring]] ''R'', so are the ''O<sub>X</sub>''-modules central in the study of the scheme ''X'' with structure sheaf ''O<sub>X</sub>''. (See [[locally ringed space]] for a definition of ''O<sub>X</sub>''-modules.) The category of ''O<sub>X</sub>''-modules is [[abelian category|abelian]]. Of particular importance are the [[coherent sheaf|coherent sheaves]] on ''X'', which arise from finitely generated (ordinary) modules on the affine parts of ''X''. The category of coherent sheaves on ''X'' is also abelian.
 
==Generalizations==
A commonly used generalization of schemes are the [[algebraic stack]]s. All schemes are algebraic stacks, but the category of algebraic stacks is richer in that it contains many quotient objects and [[moduli space]]s that cannot be constructed as schemes; stacks can also have negative dimension. Standard constructions of scheme theory, such as [[sheaf (mathematics)|sheaves]] and [[étale cohomology]], can be extended to algebraic stacks.
 
See also: [[derived scheme]].
 
==References==
*{{cite book
| author = [[David Eisenbud]]
| coauthors = [[Joe Harris (mathematician)|Joe Harris]]
| year = 1998
| title = The Geometry of Schemes
| publisher = [[Springer Science+Business Media|Springer-Verlag]]
| isbn = 0-387-98637-5
}}
*{{cite book
| author = [[Robin Hartshorne]]
| year = 1997
| title = Algebraic Geometry
| publisher = Springer-Verlag
| isbn = 0-387-90244-9
}}
*{{cite book
| author = [[David Mumford]]
| year = 1999
| title = The Red Book of Varieties and Schemes: Includes the Michigan Lectures (1974) on Curves and Their Jacobians
| edition = 2nd ed.
| publisher = Springer-Verlag
| doi = 10.1007/b62130
| isbn = 3-540-63293-X
}}
*{{cite book
| author = Qing Liu
| year = 2002
| title = Algebraic Geometry and Arithmetic Curves
| publisher = [[Oxford University Press]]
| isbn = 0-19-850284-2
}}
 
[[Category:Scheme theory]]

Revision as of 04:39, 1 March 2014


Sac à Dos Longchamp Longchamp Le Pliage Travel lkQVI Yu è descritto come asiatico, 5 con un sottile costruire, £ 125, corti capelli neri con riflessi biondi sotto. Lei è stato visto l'ultima volta indossava un grigio American Apparel una felpa con cappuccio, pantaloni neri e scarpe mocassino nero, e lei a volte porta gli occhiali. Sac Longchamp CosméTique Sac Longchamp Jeremy Scott qluJS Sex and the City Carrie Bradshaw per attirare l'attenzione al mondo delle Manolo Blahnik, ma a parte l'ossessione per le scarpe di carattere, Sarah Jessica Parker è stata associata con la marca. È interessante notare che, ancora di più, un'attrice che vuole cori alla fine degli ultimi tempi, perché ha firmato un disegno di una collezione di Manolo Blahnik! Tutte le persone in TV.. Sac Longchamp Great Wall Sac Longchamp Empreinte knzdP Questo è vero sia per gli uomini e le donne. Allora perché non fidarsi mio consiglio, e avete bisogno di farti un paio di Mephisto camminare? Quindi non fidarti di me! Ogni anno, oltre un milione di paia di scarpe vendute queste meravigliose solo in Europa.. Longchamp Le Pliage Arbre Sac Longchamp Jeremy Scott XBXvc Ha un'idea sbagliata delle incazzare i circa 100 le persone intorno a lui dopo Larry Fitzgerald segna un touchdown con 4:47 sinistra nel secondo trimestre per renderlo 10:09 Cardinali. Bills fan 0. Sac Longchamp Jacquard Sac Longchamp Cosmétique pQNao Rita dice che ha rubato soddisfatto fino a quando ha finito decorare la casa, ha ottenuto un lavoro part-time e perso cinque chili. E qui sta il problema.

Sac Longchamp Great Wall Sac Longchamp Empreinte anzpL Tango, Paz dice Hkan contribuire a una perdita. Silicon Valley EH popolato e gestito da tutti i cittadini irlandesi che hanno un kjrlighetsforhold tastiera dice che ho una voce profonda che maschera un PS: Accent. Sac Longchamp Brodé Sac Longchamp brodé ibVzz Qui è dove probabilmente mi discosto dalla maggioranza, mi sento ritiene che gli insegnanti dovrebbero essere ben vestiti casual o vestito. Mi vesto in questo modo e trovo che non si traduca in un più alto livello di rispetto da parte dei genitori e degli studenti. Sac Longchamp Tire Tracks Sac Longchamp Pliage 1623 WTzzR Anche se molte opere si appoggia su tali informazioni personali, mentre altri sono nella storia, come il Cat Mazza bastone per la difesa, che si è in combattimento filmati dalla seconda guerra mondiale in Afghanistan per i punti maglia digitali. Artisti coinvolgere anche le loro comunità circostanti.