|
|
Line 1: |
Line 1: |
| '''Indentation hardness''' tests are used to determine the [[hardness]] of a material to deformation. Several such tests exist, wherein the examined material is indented until an impression is formed; these tests can be performed on a macroscopic or microscopic scale.
| | Library Technician Gohr from Cold Lake, enjoys to spend time monopoly, diet and flower arranging. Recently has paid a visit to Stari Ras and Sopocani.<br><br>Have a look at my page [http://simpledietburnfat.com/hcg-diet-food/ detox diet] |
| | |
| When testing metals, indentation hardness correlates linearly with tensile strength.<ref>[http://www.springerlink.com/content/q86642448t84g267/ Correlation of Yield Strength and Tensile Strength with Hardness for Steels , E.J. Pavlina and C.J. Van Tyne, Journal of Materials Engineering and Performance, Volume 17, Number 6 / December, 2008]</ref> This important relation permits economically important nondestructive testing of bulk metal deliveries with lightweight, even portable equipment, such as hand-held Rockwell hardness testers.
| |
| | |
| | |
| ==Material hardness==
| |
| As the direction of [[materials science]] continues towards studying the basis of properties on smaller and smaller scales, different techniques are used to quantify material characteristics and tendencies. Measuring mechanical properties for materials on smaller scales, like thin films, can not be done using conventional [[uniaxial]] [[tensile strength|tensile]] testing. As a result, techniques testing material "hardness" by indenting a material with an impression have been developed to determine such properties.
| |
| | |
| Hardness measurements quantify the resistance of a material to plastic deformation. Indentation hardness tests compose the majority of processes used to determine material hardness, and can be divided into two classes: ''microindentation'' and ''macroindentation'' tests. Microindentation tests typically have forces less than {{convert|2|N|abbr=on}}. Hardness, however, cannot be considered to be a fundamental material property. Instead, it represents an arbitrary quantity used to provide a relative idea of material properties.<ref name=MeyersChawla>Meyers and Chawla (1999): "Mechanical Behavior of Materials", 162–168.</ref> As such, hardness can only offer a comparative idea of the material's resistance to plastic deformation since different hardness techniques have different scales.
| |
| | |
| The main source of error with indentation tests is the [[strain hardening]] effect of the process. However, it has been experimentally determined through "strainless hardness tests" that the effect is minimal with smaller indentations.<ref>Tabor, p. 16.</ref>
| |
| | |
| Surface finish of the part and the indenter do not have an effect on the hardness measurement, as long as the indentation is large compared to the surface roughness. This proves to be useful when measuring the hardness of practical surfaces. It also is helpful when leaving a shallow indentation, because a finely etched indenter leaves a much easier to read indentation than a smooth indenter.<ref>Tabor, p. 14.</ref>
| |
| | |
| The indentation that is left after the indenter and load are removed is known to "recover", or spring back slightly. This effect is properly known as ''shallowing''. For spherical indenters the indentation is known to stay symmetrical and spherical, but with a larger radius. For very hard materials the radius can be three times as large as the indenter's radius. This effect is attributed to the release of elastic stresses. Because of this effect the diameter and depth of the indentation do contain errors. The error from the change in diameter is known to be only a few percent, with the error for the depth being greater.<ref>Tabor, pp. 14-15.</ref>
| |
| | |
| Another effect the load has on the indentation is the ''piling-up'' or ''sinking-in'' of the surrounding material. If the metal is work hardened it has a tendency to pile up and form a "crater". If the metal is annealed it will sink in around the indentation. Both of these effects add to the error of the hardness measurement.<ref>Tabor, p. 15.</ref>
| |
| | |
| The equation based definition of hardness is the pressure applied over the contact area between the indenter and the material being tested. As a result hardness values are typically reported in units of pressure, although this is only a "true" pressure if the indenter and surface interface is perfectly flat.{{Citation needed|date=May 2010}}
| |
| | |
| =={{anchor|macrohardness}}Macroindentation tests==
| |
| The term "macroindentation" is applied to tests with a larger test load, such as 1 [[kgf]] or more. There are various macroindentation tests, including:
| |
| | |
| *[[Vickers hardness test]] (HV), which has one of the widest scales
| |
| *[[Brinell hardness test]] (HB)
| |
| *[[Knoop hardness test]] (HK), for measurement over small areas
| |
| *[[Janka hardness test]], for wood
| |
| *[[Meyer hardness test]]
| |
| *[[Rockwell scale|Rockwell hardness test]] (HR), principally used in the USA
| |
| *[[Shore durometer|Shore hardness test]], for polymers
| |
| *[[Barcol hardness test]], for composite materials.
| |
| | |
| There is, in general, no simple relationship between the results of different hardness tests. Though there are [[hardness comparison|practical conversion tables]] for hard steels, for example, some materials show qualitatively different behaviors under the various measurement methods. The Vickers and Brinell hardness scales correlate well over a wide range, however, with Brinell only producing overestimated values at high loads.
| |
| | |
| =={{anchor|microhardness}}Microindentation tests==
| |
| The term "microhardness" has been widely employed in the literature to describe the hardness testing of materials with low applied loads. A more precise term is "microindentation hardness testing." In microindentation hardness testing, a diamond indenter of specific geometry is impressed into the surface of the test specimen using a known applied force (commonly called a "load" or "test load") of 1 to 1000 [[gram force|gf]]. Microindentation tests typically have forces of 2 [[newton (unit)|N]] (roughly 200 gf) and produce indentations of about 50 [[micrometres|μm]]. Due to their specificity, microhardness testing can be used to observe changes in hardness on the microscopic scale. Unfortunately, it is difficult to standardize microhardness measurements; it has been found that the microhardness of almost any material is higher than its macrohardness. Additionally, microhardness values vary with load and work-hardening effects of materials.<ref name=MeyersChawla/> The two most commonly used microhardness tests are tests that also can be applied with heavier loads as macroindentation tests:
| |
| | |
| *[[Vickers hardness test]] (HV)
| |
| *[[Knoop hardness test]] (HK)
| |
| | |
| In microindentation testing, the hardness number is based on measurements made of the indent formed in the surface of the test specimen. The hardness number is based on the surface area of the indent itself divided by the applied force, giving hardness units in kgf/mm². Microindentation hardness testing can be done using Vickers as well as Knoop indenters. For the Vickers test, both the diagonals are measured and the average value is used to compute the Vickers pyramid number. In the Knoop test, only the longer diagonal is measured, and the Knoop hardness is calculated based on the projected area of the indent divided by the applied force, also giving test units in kgf/mm².
| |
| | |
| The Vickers microindentation test is carried out in a similar manner to the Vickers macroindentation tests, using the same pyramid. The Knoop test uses an elongated pyramid to indent material samples. This elongated pyramid creates a shallow impression, which is beneficial for measuring the [[Ceramography#Microindention_hardness_and_toughness|hardness of brittle materials]] or thin components. Both the Knoop and Vickers indenters require prepolishing of the surface to achieve accurate results.{{Citation needed|date=February 2011}}
| |
| | |
| Scratch tests at low loads, such as the [[Bierbaum test|Bierbaum microcharacter test]], performed with either 3 gf or 9 gf loads, preceded the development of microhardness testers using traditional indenters. In 1925, Smith and Sandland of the UK developed an indentation test that employed a square-based pyramidal indenter made from diamond.<ref>R.L. Smith and G.E. Sandland, "An Accurate Method of Determining the Hardness of Metals, with Particular Reference to Those of a High Degree of Hardness," Proceedings of the Institution of Mechanical Engineers, Vol. I, 1922, p 623–641.</ref> They chose the pyramidal shape with an angle of 136° between opposite faces in order to obtain hardness numbers that would be as close as possible to Brinell hardness numbers for the specimen. The Vickers test has a great advantage of using one hardness scale to test all materials.The first reference to the Vickers indenter with low loads was made in the annual report of the [[National Physical Laboratory, UK|National Physical Laboratory]] in 1932. Lips and Sack describes the first Vickers tester using low loads in 1936.{{Citation needed|date=June 2007}}
| |
|
| |
| There is some disagreement in the literature regarding the load range applicable to microhardness testing. ASTM Specification E384, for example, states that the load range for microhardness testing is 1 to 1000 gf. For loads of 1 kgf and below, the Vickers hardness (HV) is calculated with an equation, wherein load (''L'') is in grams force and the mean of two diagonals (''d'') is in millimeters:
| |
| | |
| <math>HV=0.0018544\times\tfrac{L}{d^2}</math>
| |
| | |
| For any given load, the hardness increases rapidly at low diagonal lengths, with the effect becoming more pronounced as the load decreases. Thus at low loads, small measurement errors will produce large hardness deviations. Thus one should always use the highest possible load in any test. Also, in the vertical portion of the curves, small measurement errors will produce large hardness deviations.
| |
| | |
| ==Nanoindentation tests==
| |
| {{Main|Nanoindentation}}
| |
| | |
| ==See also==
| |
| *[[Meyer's law]]
| |
| *[[Leeb rebound hardness test]]
| |
| also see
| |
| | |
| ==References==
| |
| ===Notes===
| |
| {{Reflist}}
| |
| ==External links==
| |
| * [http://books.google.com/books?id=p98DAAAAMBAJ&pg=PA75&dq=true#v=onepage&q=true&f=true "Pinball Tester Reveals Hardness."] ''Popular Mechanics'', November 1945, p.75.
| |
| | |
| ===Bibliography===
| |
| *{{Citation | last = Tabor | first = David | title = The Hardness of Metals | publisher = Oxford University Press | year = 2000 | url = http://books.google.com/?id=b-9LdJ5FHXYC | isbn = 0-19-850776-3}}.
| |
| | |
| {{DEFAULTSORT:Indentation Hardness}}
| |
| [[Category:Hardness tests]]
| |
Library Technician Gohr from Cold Lake, enjoys to spend time monopoly, diet and flower arranging. Recently has paid a visit to Stari Ras and Sopocani.
Have a look at my page detox diet