Selection (relational algebra): Difference between revisions
No edit summary |
en>Addbot m Bot: Migrating 1 interwiki links, now provided by Wikidata on d:q7447725 |
||
Line 1: | Line 1: | ||
'''Feynman parametrization''' is a technique for evaluating [[loop integral]]s which arise from [[Feynman diagram]]s with one or more loops. However, it is sometimes useful in integration in areas of [[pure mathematics]] as well. | |||
[[Richard Feynman]] observed that: | |||
:<math>\frac{1}{AB}=\int^1_0 \frac{du}{\left[uA +(1-u)B\right]^2}</math> | |||
which simplifies evaluating integrals like: | |||
:<math>\int \frac{dp}{A(p)B(p)}=\int dp \int^1_0 \frac{du}{\left[uA(p)+(1-u)B(p)\right]^2}=\int^1_0 du \int \frac{dp}{\left[uA(p)+(1-u)B(p)\right]^2}.</math> | |||
More generally, using the [[Dirac delta function]]: | |||
:<math>\frac{1}{A_1\cdots A_n}=(n-1)!\int^1_0 du_1 \cdots \int^1_0 du_n \frac{\delta(u_1+\dots+u_n-1)}{\left[u_1 A_1+\dots +u_n A_n\right]^n}.</math> | |||
Even more generally, provided that <math> \text{Re} ( \alpha_{j} ) > 0 </math> for all <math> 1 \leq j \leq n </math>: | |||
:<math>\frac{1}{A_{1}^{\alpha_{1}}\cdots A_{n}^{\alpha_{n}}}=\frac{\Gamma(\alpha_{1}+\dots+\alpha_{n})}{\Gamma(\alpha_{1})\cdots\Gamma(\alpha_{n})}\int_{0}^{1}du_{1}\cdots\int_{0}^{1}du_{n}\frac{\delta(\sum_{k=1}^{n}u_{k}-1)u_{1}^{\alpha_{1}-1}\cdots u_{n}^{\alpha_{n}-1}}{\left[u_{1}A_{1}+\cdots+u_{n}A_{n}\right]^{\sum_{k=1}^{n}\alpha_{k}}} | |||
.</math> <ref> | |||
{{cite web | |||
| author= Kristjan Kannike | |||
| title= Notes on Feynman Parametrization and the Dirac Delta Function | |||
| url= http://www.physic.ut.ee/~kkannike/english/science/physics/notes/feynman_param.pdf | |||
| archiveurl= http://web.archive.org/web/20070729015208/http://www.physic.ut.ee/~kkannike/english/science/physics/notes/feynman_param.pdf | |||
|archivedate=2007-07-29 | |||
| work= | |||
| publisher= | |||
| date= | |||
| accessdate=2011-07-24 | |||
}} </ref> | |||
See also [[Schwinger parametrization]]. | |||
==Derivation== | |||
:<math>\frac{1}{AB} = \frac{1}{A-B}\left(\frac{1}{B}-\frac{1}{A}\right)=\frac{1}{A-B}\int_B^A \frac{dz}{z^2}.</math> | |||
Now just linearly transform the integral using the substitution, | |||
:<math>u=(z-B)/(A-B)</math> which leads to <math>du = dz/(A-B)</math> so <math>z = uA + (1-u)B</math> | |||
and we get the desired result: | |||
:<math>\frac{1}{AB} = \int_0^1 \frac{du}{\left[uA + (1-u)B\right]^2}.</math> | |||
==References== | |||
{{reflist}} | |||
[[Category:Quantum field theory]] | |||
{{applied-math-stub}} | |||
{{quantum-stub}} |
Revision as of 13:46, 23 March 2013
Feynman parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. However, it is sometimes useful in integration in areas of pure mathematics as well.
Richard Feynman observed that:
which simplifies evaluating integrals like:
More generally, using the Dirac delta function:
Even more generally, provided that for all :
See also Schwinger parametrization.
Derivation
Now just linearly transform the integral using the substitution,
and we get the desired result:
References
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.