Buzen's algorithm: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>WikitanvirBot
m r2.7.1) (Robot: Adding fa:الگوریتم بوزن
 
en>Gareth Jones
Line 1: Line 1:
Nice to satisfy you, my name is Refugia. North Dakota is her birth location but she will have to move 1 day or an additional. The preferred hobby for my kids and me is to perform baseball and I'm attempting to make it a profession. I utilized to be unemployed but now I am a librarian and the salary has been really satisfying.<br><br>my web-site ... [http://www.1a-pornotube.com/user/WCrompton 1a-pornotube.com]
In [[mathematics]], a '''Fatou–Bieberbach domain''' is a proper subdomain of <math>\mathbb{C}^n</math>, [[biholomorphic]]ally equivalent to  <math>\mathbb{C}^n</math>. That is, an open set <math>\Omega \subsetneq \mathbb{C}^n</math> is called a Fatou–Bieberbach domain if there exists a [[bijective]] [[holomorphic]] [[function (mathematics)|function]] <math>f:\Omega \rightarrow \mathbb{C}^n</math> whose [[inverse function]] <math>f^{-1}:\mathbb{C}^n \rightarrow \Omega</math> is holomorphic.
 
== History ==
As a consequence of the [[Riemann mapping theorem]], there are no Fatou–Bieberbach domains in the case ''n''&nbsp;=&nbsp;1.
[[Pierre Fatou]] and [[Ludwig Bieberbach]] first explored such domains in  higher dimensions in the 1920s, hence the name given to them later. Since the 1980s, Fatou–Bieberbach domains have again become the subject of mathematical research.
 
== References ==
* Fatou, Pierre: "Sur les fonctions méromorphs de deux variables. Sur certains fonctions uniformes de deux variables." ''C.R.'' Paris 175 (1922)
* Bieberbach, Ludwig: "Beispiel zweier ganzer Funktionen zweier komplexer Variablen, welche eine schlichte volumtreue Abbildung des <math>\mathcal{R}_4</math> auf einen Teil seiner selbst vermitteln". Preussische Akademie der Wissenschaften. ''Sitzungsberichte'' (1933)
* Rosay, J.-P. and Rudin, W: "Holomorphic maps from <math>\mathbb{C}^n</math> to <math>\mathbb{C}^n</math>". ''Trans. A.M.S.'' 310 (1988) [http://www.jstor.org/stable/2001110]
 
{{DEFAULTSORT:Fatou-Bieberbach domain}}
[[Category:Several complex variables]]
[[Category:Inverse functions]]

Revision as of 00:58, 27 November 2013

In mathematics, a Fatou–Bieberbach domain is a proper subdomain of n, biholomorphically equivalent to n. That is, an open set Ωn is called a Fatou–Bieberbach domain if there exists a bijective holomorphic function f:Ωn whose inverse function f1:nΩ is holomorphic.

History

As a consequence of the Riemann mapping theorem, there are no Fatou–Bieberbach domains in the case n = 1. Pierre Fatou and Ludwig Bieberbach first explored such domains in higher dimensions in the 1920s, hence the name given to them later. Since the 1980s, Fatou–Bieberbach domains have again become the subject of mathematical research.

References

  • Fatou, Pierre: "Sur les fonctions méromorphs de deux variables. Sur certains fonctions uniformes de deux variables." C.R. Paris 175 (1922)
  • Bieberbach, Ludwig: "Beispiel zweier ganzer Funktionen zweier komplexer Variablen, welche eine schlichte volumtreue Abbildung des 4 auf einen Teil seiner selbst vermitteln". Preussische Akademie der Wissenschaften. Sitzungsberichte (1933)
  • Rosay, J.-P. and Rudin, W: "Holomorphic maps from n to n". Trans. A.M.S. 310 (1988) [1]