Compact convergence: Difference between revisions
en>Cydebot m Robot - Speedily moving category Convergence to Category:Convergence (mathematics) per CFDS. |
en>Addbot m Bot: Migrating 1 interwiki links, now provided by Wikidata on d:q1780715 |
||
Line 1: | Line 1: | ||
'''Logic optimization''', a part of [[logic synthesis]], is the process of finding an equivalent representation of the specified [[logic circuit]] under one or more specified constraints. Generally the circuit is constrained to minimum chip area meeting a prespecified delay. | |||
==Introduction== | |||
With the advent of [[logic synthesis]], one of the biggest challenges faced by the [[Electronic design automation]](EDA) industry was to find the best [[netlist]] representation of the given design description. While [[two-level logic optimization]] had long existed in the form of the [[Quine–McCluskey algorithm]], later followed by the [[Espresso heuristic logic minimizer]], the rapidly improving chip densities, and the wide adoption of [[Hardware description language|HDLs]] for circuit description, formalized the logic optimization domain as it exists today. | |||
Today, logic optimization is divided into various categories based on two criteria: | |||
'''Based on circuit representation''' | |||
* Two-level logic optimization | |||
* Multi-level logic optimization''' | |||
'''Based on circuit characteristics ''' | |||
* Sequential logic optimization | |||
* Combinational logic optimization | |||
While a [[two-level circuit representation]] of circuits strictly refers to the flattened view of the circuit in terms of SOPs ([[Canonical form (Boolean algebra)|sum-of-products]]) — which is more applicable to a [[Programmable logic array|PLA]] implementation of the design{{Clarify|date=February 2010}} — a [[multi-level representation]] is a more generic view of the circuit in terms of arbitrarily connected SOPs, POSs ([[Canonical form (Boolean algebra)|product-of-sums]]), factored form etc. Logic optimization algorithms generally work either on the structural (SOPs, factored form) or functional (BDDs, ADDs) representation of the circuit.{{Clarify|date=February 2010}} | |||
==Two-level versus multi-level representations== | |||
If we have two functions ''F''<sub>1</sub> and ''F''<sub>2</sub>: | |||
: <math>F_1 = AB + AC + AD,\,</math> | |||
: <math>F_2 = A'B + A'C + A'E.\,</math> | |||
The above 2-level representation takes six product terms and 24 transistors in CMOS Rep.{{Why|date=February 2010}} | |||
A functionally equivalent representation in multilevel can be: | |||
: ''P'' = ''B'' + ''C''. | |||
: ''F''<sub>1</sub> = ''AP'' + ''AD''. | |||
: ''F''<sub>2</sub> = ''A<nowiki>'</nowiki>P'' + ''A<nowiki>'</nowiki>E''. | |||
While the number of levels here is 3, the total number of product terms and literals reduce {{Quantify|date=February 2010}} because of the sharing of the term B + C. | |||
Similarly, we distinguish between [[Sequential logic|sequential]] and [[Combinational logic|combinational circuits]], whose behavior can be described in terms of [[finite-state machine]] state tables/diagrams or by Boolean functions and relations respectively.{{Clarify|date=February 2010}} | |||
== See also == | |||
*[[Binary decision diagram]] | |||
*[[Circuit minimization]] | |||
== References == | |||
*''Synthesis and Optimization of Digital Circuits'', by Giovanni De Micheli, ISBN 0-07-016333-2. | |||
[[Category:Electronic engineering]] | |||
[[Category:Electronic design]] | |||
[[Category:Digital electronics]] | |||
[[Category:Electronic design automation]] | |||
[[Category:Electronics optimization]] |
Latest revision as of 07:09, 16 March 2013
Logic optimization, a part of logic synthesis, is the process of finding an equivalent representation of the specified logic circuit under one or more specified constraints. Generally the circuit is constrained to minimum chip area meeting a prespecified delay.
Introduction
With the advent of logic synthesis, one of the biggest challenges faced by the Electronic design automation(EDA) industry was to find the best netlist representation of the given design description. While two-level logic optimization had long existed in the form of the Quine–McCluskey algorithm, later followed by the Espresso heuristic logic minimizer, the rapidly improving chip densities, and the wide adoption of HDLs for circuit description, formalized the logic optimization domain as it exists today.
Today, logic optimization is divided into various categories based on two criteria:
Based on circuit representation
- Two-level logic optimization
- Multi-level logic optimization
Based on circuit characteristics
- Sequential logic optimization
- Combinational logic optimization
While a two-level circuit representation of circuits strictly refers to the flattened view of the circuit in terms of SOPs (sum-of-products) — which is more applicable to a PLA implementation of the designTemplate:Clarify — a multi-level representation is a more generic view of the circuit in terms of arbitrarily connected SOPs, POSs (product-of-sums), factored form etc. Logic optimization algorithms generally work either on the structural (SOPs, factored form) or functional (BDDs, ADDs) representation of the circuit.Template:Clarify
Two-level versus multi-level representations
If we have two functions F1 and F2:
The above 2-level representation takes six product terms and 24 transistors in CMOS Rep.Template:Why
A functionally equivalent representation in multilevel can be:
- P = B + C.
- F1 = AP + AD.
- F2 = A'P + A'E.
While the number of levels here is 3, the total number of product terms and literals reduce Template:Quantify because of the sharing of the term B + C.
Similarly, we distinguish between sequential and combinational circuits, whose behavior can be described in terms of finite-state machine state tables/diagrams or by Boolean functions and relations respectively.Template:Clarify
See also
References
- Synthesis and Optimization of Digital Circuits, by Giovanni De Micheli, ISBN 0-07-016333-2.