Bending stiffness: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>ZéroBot
m r2.7.1) (Robot: Adding pt:Rigidez à flexão
 
en>Addbot
m Bot: Migrating 1 interwiki links, now provided by Wikidata on d:q4887116
Line 1: Line 1:
Hi there. My name is Sophia Meagher even though it  [http://www.chk.woobi.co.kr/xe/?document_srl=346069 online psychic readings] phone - [http://www.skullrocker.com/blogs/post/10991 skullrocker.com] - is not the title on my birth certificate. Distributing production is how he makes a residing. One of the very best issues in the world for him is performing ballet and he'll be starting some thing else alongside with it. Some time in the past he selected to reside in North Carolina and he doesn't strategy on changing it.<br><br>my homepage: [http://checkmates.co.za/index.php?do=/profile-56347/info/ clairvoyance]
'''''Bhaskara's'' Lemma''' is an identity used as a lemma during the [[chakravala method]]. It states that:
:<math>\, Nx^2 + k = y^2\implies \,N\left(\frac{mx + y}{k}\right)^2 + \frac{m^2 - N}{k} = \left(\frac{my + Nx}{k}\right)^2</math>
for integers <math>m,\, x,\, y,\, N,</math> and non-zero integer <math>k</math>.
 
==Proof==
The proof follows from simple algebraic manipulations as follows:  multiply both sides of the equation by <math>m^2-N</math>, add <math>N^2x^2+2Nmxy+Ny^2</math>, factor, and divide by <math>k^2</math>.
 
:<math>\, Nx^2 + k = y^2\implies Nm^2x^2-N^2x^2+k(m^2-N) = m^2y^2-Ny^2</math>
:<math>\implies Nm^2x^2+2Nmxy+Ny^2+k(m^2-N) = m^2y^2+2Nmxy+N^2x^2</math>
:<math>\implies N(mx+y)^2+k(m^2-N) = (my+Nx)^2</math>
:<math>\implies \,N\left(\frac{mx + y}{k}\right)^2 + \frac{m^2 - N}{k} = \left(\frac{my + Nx}{k}\right)^2.</math>
 
So long as neither <math>k</math> nor <math>m^2-N</math> are zero, the implication goes in both directions. (Note also that the lemma holds for real or complex numbers as well as integers.)
 
==References==
*C. O. Selenius, "Rationale of the chakravala process of Jayadeva and Bhaskara II", ''Historia Mathematica'', 2 (1975), 167-184.
*C. O. Selenius, ''Kettenbruch theoretische Erklarung der zyklischen Methode zur Losung der Bhaskara-Pell-Gleichung'', Acta Acad. Abo. Math. Phys. 23 (10) (1963).
*George Gheverghese Joseph, ''The Crest of the Peacock: Non-European Roots of Mathematics'' (1975).
 
==External links==
*[http://www-groups.dcs.st-and.ac.uk/~history/Miscellaneous/Pearce/Lectures/Ch8_6.html Introduction to chakravala]
 
{{number-theoretic algorithms}}
 
{{DEFAULTSORT:Bhaskara's lemma, proof of}}
[[Category:Diophantine equations]]
[[Category:Number theoretic algorithms]]
[[Category:Lemmas]]
[[Category:Indian mathematics]]
[[Category:Articles containing proofs]]

Revision as of 16:39, 17 March 2013

Bhaskara's Lemma is an identity used as a lemma during the chakravala method. It states that:

Nx2+k=y2N(mx+yk)2+m2Nk=(my+Nxk)2

for integers m,x,y,N, and non-zero integer k.

Proof

The proof follows from simple algebraic manipulations as follows: multiply both sides of the equation by m2N, add N2x2+2Nmxy+Ny2, factor, and divide by k2.

Nx2+k=y2Nm2x2N2x2+k(m2N)=m2y2Ny2
Nm2x2+2Nmxy+Ny2+k(m2N)=m2y2+2Nmxy+N2x2
N(mx+y)2+k(m2N)=(my+Nx)2
N(mx+yk)2+m2Nk=(my+Nxk)2.

So long as neither k nor m2N are zero, the implication goes in both directions. (Note also that the lemma holds for real or complex numbers as well as integers.)

References

  • C. O. Selenius, "Rationale of the chakravala process of Jayadeva and Bhaskara II", Historia Mathematica, 2 (1975), 167-184.
  • C. O. Selenius, Kettenbruch theoretische Erklarung der zyklischen Methode zur Losung der Bhaskara-Pell-Gleichung, Acta Acad. Abo. Math. Phys. 23 (10) (1963).
  • George Gheverghese Joseph, The Crest of the Peacock: Non-European Roots of Mathematics (1975).

External links

Template:Number-theoretic algorithms