Cofinality: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Xantharius
Cofinality of ordinals and other well-ordered sets: Unified math styles as per WP:MOS
 
en>Legobot
m Bot: Migrating langlinks to WP:Wikidata - d:q1283623
Line 1: Line 1:
There is really much talk regarding the advantages of interval training plus how it may enable you lose weight faster than usual cardio, in the event you train in your target heart rate zone optimal for burning fat. Most persons understand how to do interval training. There is a lot created regarding it online. The query which many people are asking is how to calculate your target heart rate, thus you're training in the right target heart rate zone that will optimize the burning of fat.<br><br>After this, we can move on to calculate a Body Mass Index (BMI). Input height plus fat for a BMI and how this classifies you. I came out as obese, that is understandable, as I nevertheless have about calorie burn calculator 15 - 20lbs to get rid of. You will equally be presented with your perfect BMI range. There's also a Lean Body Mass calculator, which estimates the fat of muscles, organs, blood plus water in your body.<br><br>Calorie Counter (click here) is a free online weight reduction resource website. Calorie Counter provides free calorie charts, nutrition information banks, diet and food journals plus other diet help tools. User should register and log into access full site benefits, nevertheless there is no expense. The website attributes an an interactive video to explain how to use the food log tool called "Food Logger". There is furthermore a comprehensive list of foods, menu items, brands, diners foods and goods which dieters may use to check calorie count plus nutrition information. This website has free online and printable food journals, exercise plans, exercise schedule, fitness suggestions, fat loss dishes plus tips and more.<br><br>LiveStrong (click here) Livestrong is a Lance Armstrong Foundation url. Livestrong has free food journal, exercise plus activity tracking [http://safedietplansforwomen.com/calories-burned-walking calories burned calculator] and a free calorie counter database called My Plate. Livestrong boasts over 2.5 millions users.<br><br>Play group sports. One superb idea for losing weight the fun method is to play group sports. Sometimes the region calories burned calculator recreation centers may have free gym equipment you can employ, or even greatly discounted.<br><br>Now which weve discovered how to lose arm fat without the use of weights or working out at the gym, let's explore how lifting weights could accelerate a fat loss that more. Weight lifting is a very efficient technique to lose fat swiftly, burn calories, and get inside amazing shape. There are several different fat lifting exercises that will assist we strengthen plus tone your arms, including tricep curls, barbell curls, dumbbell curls, plus skull crushers.<br><br>There are a lot of free calorie calculators onlineTracking calories burned is important for any fitness or fat management system. The information given is designed to help we make informed decisions regarding a health.
{{Distinguish|cofiniteness}}
In [[mathematics]], especially in [[order theory]], the '''cofinality''' cf(''A'') of a [[partially ordered set]] ''A'' is the least of the [[cardinality|cardinalities]] of the [[cofinal (mathematics)|cofinal]] subsets of ''A''.
 
This definition of cofinality relies on the [[axiom of choice]], as it uses the fact that every non-empty set of [[cardinal number]]s has a least member. The cofinality of a partially ordered set ''A'' can alternatively be defined as the least [[ordinal number|ordinal]] ''x'' such that there is a function from ''x'' to ''A'' with cofinal [[Image (mathematics)|image]]. This second definition makes sense without the axiom of choice. If the axiom of choice is assumed, as will be the case in the rest of this article, then the two definitions are equivalent.
 
Cofinality can be similarly defined for a [[directed set]] and is used to generalize the notion of a [[subsequence]] in a [[Net (mathematics)|net]].
 
== Examples ==
*  The cofinality of a partially ordered set with [[greatest element]] is 1 as the set consisting only of the greatest element is cofinal (and must be contained in every other cofinal subset).
** In particular, the cofinality of any nonzero finite ordinal, or indeed any finite directed set, is 1, since such sets have a greatest element.
* Every cofinal subset of a partially ordered set must contain all [[maximal element]]s of that set. Thus the cofinality of a finite partially ordered set is equal to the number of its maximal elements.
** In particular, let ''A'' be a set of size ''n'', and consider the set of subsets of ''A'' containing no more than ''m'' elements.  This is partially ordered under inclusion and the subsets with ''m'' elements are maximal.  Thus the cofinality of this poset is ''n'' [[Binomial coefficient|choose]] ''m''.
* A subset of the natural numbers '''N''' is cofinal in '''N''' if and only if it is infinite, and therefore the cofinality of &alefsym;<sub>0</sub> is &alefsym;<sub>0</sub>. Thus &alefsym;<sub>0</sub> is a [[regular cardinal]].
* The cofinality of the [[real number]]s with their usual ordering is &alefsym;<sub>0</sub>, since '''N''' is cofinal in '''R'''. The usual ordering of '''R''' is not [[order isomorphic]] to ''c'', the [[cardinality of the continuum|cardinality of the real numbers]], which has cofinality strictly greater than &alefsym;<sub>0</sub>.  This demonstrates that the cofinality depends on the order; different orders on the same set may have different cofinality.
 
==Properties==
If ''A'' admits a [[total order|totally ordered]] cofinal subset, then we can find a subset ''B'' which is well-ordered and cofinal in ''A''. Any subset of ''B'' is also well-ordered. If two cofinal subsets of ''B'' have minimal cardinality (i.e. their cardinality is the cofinality of ''B''), then they are order isomorphic to each other.
 
== Cofinality of ordinals and other well-ordered sets ==
The '''cofinality of an ordinal''' &alpha; is the smallest ordinal &delta; which is the [[order type]] of a [[cofinal subset]] of &alpha;. The cofinality of a set of ordinals or any other [[well-ordered set]] is the cofinality of the order type of that set.
 
Thus for a [[limit ordinal]], there exists a &delta;-indexed strictly increasing sequence with limit &alpha;.  For example, the cofinality of ω² is ω, because the sequence ω·''m'' (where ''m'' ranges over the natural numbers) tends to ω²; but, more generally, any countable limit ordinal has cofinality ω.  An uncountable limit ordinal may have either cofinality ω as does &omega;<sub>&omega;</sub> or an uncountable cofinality.
 
The cofinality of 0 is 0. The cofinality of any [[successor ordinal]] is 1. The cofinality of any limit ordinal is at least &omega;.
 
== Regular and singular ordinals ==
A '''regular ordinal''' is an ordinal which is equal to its cofinality. A '''singular ordinal''' is any ordinal which is not regular.
 
Every regular ordinal is the [[initial ordinal]] of a cardinal. Any limit of regular ordinals is a limit of initial ordinals and thus is also initial but need not be regular. Assuming the Axiom of choice, <math>\omega_{\alpha+1}</math> is regular for each α.  In this case, the ordinals 0, 1, <math>\omega</math>, <math>\omega_1</math>, and <math>\omega_2</math> are regular, whereas 2, 3, <math>\omega_\omega</math>, and ω<sub>ω·2</sub> are initial ordinals which are not regular.
 
The cofinality of any ordinal ''α'' is a regular ordinal, i.e. the cofinality of the cofinality of ''α'' is the same as the cofinality of ''α''.  So the cofinality operation is [[idempotent]].
 
==Cofinality of cardinals==
If κ is an infinite cardinal number, then cf(κ) is the least cardinal such that there is an [[bounded (set theory)|unbounded]] function from it to κ; and cf(κ) = the cardinality of the smallest collection of sets of strictly smaller cardinals such that their sum is κ; more precisely
 
:<math>\mathrm{cf}(\kappa) = \inf \left\{ \mathrm{card}(I)\ |\ \kappa = \sum_{i \in I} \lambda_i\ \mathrm{and}\ (\forall i)(\lambda_i < \kappa)\right\}</math>
 
That the set above is nonempty comes from the fact that
 
:<math>\kappa = \bigcup_{i \in \kappa} \{i\}</math>
 
i.e. the [[disjoint union]] of κ singleton sets. This implies immediately that cf(κ) ≤ κ.
The cofinality of any totally ordered set is regular, so one has cf(κ) = cf(cf(κ)).
 
Using [[König's theorem (set theory)|König's theorem]], one can prove κ < κ<sup>cf(κ)</sup> and κ < cf(2<sup>κ</sup>) for any infinite cardinal κ.
 
The last inequality implies that the cofinality of the cardinality of the continuum must be uncountable. On the other hand,
 
:<math> \aleph_\omega = \bigcup_{n < \omega} \aleph_n </math>.
 
the ordinal number ω being the first infinite ordinal, so that the cofinality of <math>\aleph_\omega</math> is card(ω) = <math>\aleph_0</math>. (In particular, <math>\aleph_\omega</math> is singular.) Therefore,
 
:<math>2^{\aleph_0}\neq\aleph_\omega.</math>
 
(Compare to the [[continuum hypothesis]], which states <math>2^{\aleph_0}= \aleph_1</math>.)
 
Generalizing this argument, one can prove that for a limit ordinal δ
 
:<math>\mathrm{cf} (\aleph_\delta) = \mathrm{cf} (\delta) </math>.
 
==See also==
*[[Initial ordinal]]
 
==References==
*Jech, Thomas, 2003. ''Set Theory: The Third Millennium Edition, Revised and Expanded''SpringerISBN 3-540-44085-2.
*Kunen, Kenneth, 1980. ''Set Theory: An Introduction to Independence Proofs''. Elsevier.  ISBN 0-444-86839-9.
 
[[Category:Order theory]]
[[Category:Set theory]]
[[Category:Ordinal numbers]]
[[Category:Cardinal numbers]]

Revision as of 17:33, 20 February 2013

Template:Distinguish In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A.

This definition of cofinality relies on the axiom of choice, as it uses the fact that every non-empty set of cardinal numbers has a least member. The cofinality of a partially ordered set A can alternatively be defined as the least ordinal x such that there is a function from x to A with cofinal image. This second definition makes sense without the axiom of choice. If the axiom of choice is assumed, as will be the case in the rest of this article, then the two definitions are equivalent.

Cofinality can be similarly defined for a directed set and is used to generalize the notion of a subsequence in a net.

Examples

  • The cofinality of a partially ordered set with greatest element is 1 as the set consisting only of the greatest element is cofinal (and must be contained in every other cofinal subset).
    • In particular, the cofinality of any nonzero finite ordinal, or indeed any finite directed set, is 1, since such sets have a greatest element.
  • Every cofinal subset of a partially ordered set must contain all maximal elements of that set. Thus the cofinality of a finite partially ordered set is equal to the number of its maximal elements.
    • In particular, let A be a set of size n, and consider the set of subsets of A containing no more than m elements. This is partially ordered under inclusion and the subsets with m elements are maximal. Thus the cofinality of this poset is n choose m.
  • A subset of the natural numbers N is cofinal in N if and only if it is infinite, and therefore the cofinality of ℵ0 is ℵ0. Thus ℵ0 is a regular cardinal.
  • The cofinality of the real numbers with their usual ordering is ℵ0, since N is cofinal in R. The usual ordering of R is not order isomorphic to c, the cardinality of the real numbers, which has cofinality strictly greater than ℵ0. This demonstrates that the cofinality depends on the order; different orders on the same set may have different cofinality.

Properties

If A admits a totally ordered cofinal subset, then we can find a subset B which is well-ordered and cofinal in A. Any subset of B is also well-ordered. If two cofinal subsets of B have minimal cardinality (i.e. their cardinality is the cofinality of B), then they are order isomorphic to each other.

Cofinality of ordinals and other well-ordered sets

The cofinality of an ordinal α is the smallest ordinal δ which is the order type of a cofinal subset of α. The cofinality of a set of ordinals or any other well-ordered set is the cofinality of the order type of that set.

Thus for a limit ordinal, there exists a δ-indexed strictly increasing sequence with limit α. For example, the cofinality of ω² is ω, because the sequence ω·m (where m ranges over the natural numbers) tends to ω²; but, more generally, any countable limit ordinal has cofinality ω. An uncountable limit ordinal may have either cofinality ω as does ωω or an uncountable cofinality.

The cofinality of 0 is 0. The cofinality of any successor ordinal is 1. The cofinality of any limit ordinal is at least ω.

Regular and singular ordinals

A regular ordinal is an ordinal which is equal to its cofinality. A singular ordinal is any ordinal which is not regular.

Every regular ordinal is the initial ordinal of a cardinal. Any limit of regular ordinals is a limit of initial ordinals and thus is also initial but need not be regular. Assuming the Axiom of choice, ωα+1 is regular for each α. In this case, the ordinals 0, 1, ω, ω1, and ω2 are regular, whereas 2, 3, ωω, and ωω·2 are initial ordinals which are not regular.

The cofinality of any ordinal α is a regular ordinal, i.e. the cofinality of the cofinality of α is the same as the cofinality of α. So the cofinality operation is idempotent.

Cofinality of cardinals

If κ is an infinite cardinal number, then cf(κ) is the least cardinal such that there is an unbounded function from it to κ; and cf(κ) = the cardinality of the smallest collection of sets of strictly smaller cardinals such that their sum is κ; more precisely

cf(κ)=inf{card(I)|κ=iIλiand(i)(λi<κ)}

That the set above is nonempty comes from the fact that

κ=iκ{i}

i.e. the disjoint union of κ singleton sets. This implies immediately that cf(κ) ≤ κ. The cofinality of any totally ordered set is regular, so one has cf(κ) = cf(cf(κ)).

Using König's theorem, one can prove κ < κcf(κ) and κ < cf(2κ) for any infinite cardinal κ.

The last inequality implies that the cofinality of the cardinality of the continuum must be uncountable. On the other hand,

ω=n<ωn.

the ordinal number ω being the first infinite ordinal, so that the cofinality of ω is card(ω) = 0. (In particular, ω is singular.) Therefore,

20ω.

(Compare to the continuum hypothesis, which states 20=1.)

Generalizing this argument, one can prove that for a limit ordinal δ

cf(δ)=cf(δ).

See also

References

  • Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
  • Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.