|
|
Line 1: |
Line 1: |
| {{Cosmology|cTopic=Structure Formation}}
| | You understand or a doctor has told we which you have hemorrhoids: today what is the greatest hemorrhoid treatment. What is the best way to get rid of hemorrhoids?<br><br>Try to apply petroleum jelly to the region where we have hemorrhoid. You usually feel better in no time following applying several. You might feel the symptoms are almost gone. Well, utilize of petroleum jelly is considered as the most affordable and painless [http://hemorrhoidtreatmentfix.com/hemorrhoid-surgery hemorrhoids surgery].<br><br>Step 4 - Take Heed Wiping. Additionally to wiping gently, you ought to avoid utilizing toilet tissue or any alternative product that is color treated, scented or has chemicals that may make your hemorrhoids worse. Moisten a toilet tissue or invest inside a hypo-allergenic wipe such as the ones chosen for diaper rash. Create sure the wipes may be flushed too..<br><br>If you will ask wellness practitioners they normally suggest surgery in getting rid of your hemorrhoid. The procedures in surgery are relatively simple and to get out o the painful condition when you are performed treating it.<br><br>There are 2 types of hemorrhoids- internal and exterior. Both are the result of swollen veins in the anal area. Internal hemorrhoids is hard to discover because they are not noticeable. You'll just discover out later whenever it starts to bleed. On the additional hand, outside hemorrhoids is felt because a difficult lump in the anal opening. These are generally truly noticeable because which they are swollen, red, itchy, and surprisingly painful.<br><br>Ice is regarded as the simplest yet the most effective hemorrhoid treatments you are able to utilize to lower swelling, swelling, bleeding and pain. Wrap it in chipped shape in a piece of cheese fabric and apply it onto the hemorrhoid itself.<br><br>As far because the fast fix for pain plus itching is concerned, nature furthermore provides inside the form of herbal remedies, sitz baths and believe it or not, ice chips. These techniques not only work quick, however they are safe. This really is especially wise news for expecting women whom have to be thoughtful when using treatments. |
| The study of '''galaxy formation and evolution''' is concerned with the processes that formed a [[Homogeneity and heterogeneity|heterogeneous]] universe from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time, and the processes that have generated the variety of structures observed in nearby galaxies. It is one of the most active research areas in [[astrophysics]].
| |
|
| |
| [[Galaxy]] formation is hypothesized to occur, from [[structure formation]] theories, as a result of tiny [[quantum fluctuation]]s in the aftermath of the [[Big Bang]]. The simplest model for this that is in general agreement with observed phenomena is the [[Lambda-CDM model|<math>\Lambda</math> Cold Dark Matter cosmology]]; that is to say that clustering and merging is how galaxies gain in mass, and can also determine their shape and structure.
| |
| | |
| ==Formation of the first galaxies==
| |
| After the [[Big Bang]], the [[universe]], for a time, was remarkably [[Homogeneity (physics)|homogeneous]], as can be observed in the [[cosmic microwave background]] or CMB (the [[density contrast|fluctuations]] of which are less than one part in one hundred thousand). There was little-to-no structure in the universe, and thus no galaxies. Therefore we must ask how the smoothly distributed universe of the [[Cosmic microwave background|CMB]] became the clumpy universe we see today.
| |
| | |
| The most accepted theory of how these structures came to be is that all the [[large-scale structure of the cosmos]] we observe today was [[structure formation|formed]] as a consequence of the growth of the [[primordial fluctuations]], which are small changes in the density of the universe in a confined region. As the universe cooled clumps of [[dark matter]] began to condense, and within them gas began to condense. The primordial fluctuations gravitationally attracted gas and dark matter to the denser areas, and thus the seeds that would later become galaxies were formed. These structures constituted the first galaxies. At this point the universe was almost exclusively composed of hydrogen, helium, and dark matter. Soon after the first proto-galaxies formed, the hydrogen and helium gas within them began to condense and make the first stars. Thus the first galaxies were then formed. In 2007, using the [[W. M. Keck Observatory|Keck]] telescope, a team from [[California Institute of Technology]] found six star forming galaxies about 13.2 billion light years ([[Distance measures (cosmology)|light travel distance]]) away and therefore created when the universe was only 500 million years old.<ref>"New Scientist" 14th July 2007</ref> The discovery of a galaxy more than 13 billion years old, which existed only 480 million years after the Big Bang, was reported in January 2011.
| |
| | |
| [[File:ALMA Pinpoints Early Galaxies.jpg|thumb|Over 100 of the most fertile star-forming galaxies in the early Universe pinpointed by [[Atacama Large Millimeter Array|ALMA]].<ref>{{cite news|title=ALMA Pinpoints Early Galaxies at Record Speed|url=http://www.eso.org/public/news/eso1318/|accessdate=17 April 2013|newspaper=ESO Press Release}}</ref> ]]
| |
| | |
| The universe was very violent in its early epochs, and galaxies grew quickly, evolving by accretion of smaller mass galaxies. The result of this process is left imprinted on the distribution of galaxies in the nearby universe (see image of [[2dF Galaxy Redshift Survey]]). Galaxies are not isolated objects in space; rather, galaxies are distributed in a great cosmic web of filaments throughout the universe. The locations where the filaments meet are dense [[galaxy cluster|clusters of galaxies]] that began as small fluctuations in the early universe. Hence the distribution of galaxies is closely related to the physics of the early universe.
| |
| | |
| Despite its many successes, this picture is not sufficient to explain the variety of structure we see in [[galaxies]]. Galaxies come in a variety of shapes, from round, featureless [[elliptical galaxies]] to the pancake-flat [[spiral galaxies]].
| |
| | |
| == Commonly observed properties of galaxies ==
| |
| [[Image:NGC891.jpg|thumb|210px|right| [[NGC 891]], a very thin disk galaxy.]]
| |
| [[Image:HubbleTuningFork.jpg|thumb|210px|right|[[Hubble Sequence|Hubble tuning fork]] diagram of galaxy morphology]]
| |
| [[Image:Artist’s impression of a gamma-ray burst shining through two young galaxies in the early Universe.jpg|thumb|This artist’s impression shows two galaxies in the early universe. The brilliant explosion on the left is a [[gamma-ray burst]]. As the light from the burst passes through the two galaxies on the way to [[Earth]] (outside the frame to the right), some colours are absorbed by the cool gas in the galaxies, leaving characteristic dark lines in the spectrum. Careful study of these spectra has allowed astronomers to discover that these two galaxies are remarkably rich in heavier chemical elements.]]
| |
| | |
| Some notable observed features of [[galaxy]] structure (including our own [[Milky Way]]) that [[astronomers]] wish to explain with galactic formation theories, include (but are certainly not limited to) the following:
| |
| * [[Spiral galaxies]] and the [[galactic plane|galactic disk]] are quite thin, dense, and rotate relatively fast. (Our Milky Way galaxy is believed to be a barred spiral.)
| |
| * The majority of mass in galaxies is made up of [[dark matter]], a substance which is not directly observable, and might not interact through any means except gravity.
| |
| * [[Halo star]]s are typically much older and have much lower [[metallicity|metallicities]] (that is to say, they are almost exclusively composed of [[hydrogen]] and [[helium]]) than disk stars.
| |
| * Many disk galaxies have a puffed up outer disk (often called the "thick disk") that is composed of old stars.
| |
| * [[Globular cluster]]s are typically old and metal-poor as well, but there are a few that are not nearly as metal-poor as most, and/or have some younger stars.
| |
| * [[High velocity cloud]]s, clouds of [[electric charge|neutral]] [[hydrogen]] are "raining" down on the galaxy, and presumably have been from the beginning (this would be the necessary source of a gas disk from which the disk stars formed).
| |
| * Galaxies come in a great variety of shapes and sizes (see the [[Hubble Sequence]]), from giant, featureless blobs of old stars (called [[elliptical galaxies]]) to thin disks with gas and stars arranged in highly ordered [[spiral galaxies|spirals]].
| |
| * The majority of giant galaxies contain a [[supermassive black hole]] in their centers, ranging in mass from millions to billions of times the mass of our [[Sun]]. The black hole mass is tied to properties of its host galaxy.
| |
| * Many of the properties of galaxies (including the [[galaxy color-magnitude diagram]]) indicate that there are fundamentally two types of galaxies. These groups divide into blue star-forming galaxies that are more like [[spiral galaxies|spiral types]], and red non-star forming galaxies that are more like [[elliptical galaxies]].
| |
| | |
| ==Formation of disk galaxies==
| |
| [[Image:M101 hires STScI-PRC2006-10a.jpg|thumb|220px|An image of Messier 101 a prototypical [[spiral galaxy]] seen face-on.]]
| |
| [[Image:warped galaxy.jpg|thumb|right|220px|A spiral galaxy, ESO 510-G13, was warped as a result of colliding with another galaxy. After the other galaxy is completely absorbed, the distortion will disappear. The process typically takes millions if not billions of years.]]
| |
| | |
| The key properties of [[spiral galaxy|disk galaxies]], which are also commonly called [[spiral galaxies]], are that they are very thin, rotate rapidly, and often show spiral structure. One of the main challenges to galaxy formation is the great number of thin disk galaxies in the local universe. The problem is that disks are very fragile, and mergers with other galaxies can quickly destroy thin disks.
| |
| | |
| [[Olin Eggen]], [[Donald Lynden-Bell]], and [[Allan Sandage]]<ref>{{cite journal | last = Eggen | first = O.J. | coauthors = Lynden-Bell, D.; Sandage, A. R. | title = Evidence from the motions of old stars that the Galaxy collapsed | bibcode = 1962ApJ...136..748E | year = 1962 | journal = [[Astrophysical Journal|The Astrophysical Journal]] | volume = 136 | pages = 748 | doi = 10.1086/147433}}</ref> in 1962, proposed a theory that disk galaxies form through a monolithic collapse of a large gas cloud. As the cloud collapses the gas settles into a rapidly rotating disk. Known as a top-down formation scenario, this theory is quite simple yet no longer widely accepted because observations of the early universe strongly suggest that objects grow from bottom-up (i.e. smaller objects merging to form larger ones). It was first proposed by [[Leonard Searle]] and [[Robert Zinn]]<ref>{{cite journal | last = Searle | first = L. | coauthors = Zinn, R. | year = 1978 | journal = [[Astrophysical Journal|The Astrophysical Journal]] | title = Compositions of halo clusters and the formation of the galactic halo | bibcode = 1978ApJ...225..357S | volume = 225 | pages = 357–379 | doi = 10.1086/156499}}</ref> that galaxies form by the coalescence of smaller progenitors.
| |
| | |
| More recent theories include the clustering of dark matter halos in the bottom-up process. Essentially early on in the universe galaxies were composed mostly of gas and dark matter, and thus, there were fewer stars. As a galaxy gained mass (by accreting smaller galaxies) the dark matter stays mostly on the outer parts of the galaxy. This is because the dark matter can only interact gravitationally, and thus will not dissipate. The gas, however, can quickly contract, and as it does so it rotates faster, until the final result is a very thin, very rapidly rotating disk.
| |
| | |
| Astronomers do not currently know what process stops the contraction. In fact, theories of disk galaxy formation are not successful at producing the rotation speed and size of disk galaxies. It has been suggested that the radiation from bright newly formed stars, or from an [[active galactic nuclei]] can slow the contraction of a forming disk. It has also been suggested that the [[dark matter]] halo can pull the galaxy, thus stopping disk contraction.
| |
| | |
| In recent years, a great deal of focus has been put on understanding merger events in the evolution of galaxies. Our own galaxy (the [[Milky Way]]) has a tiny [[satellite]] galaxy (the [[Sagittarius Dwarf Elliptical Galaxy]]) which is currently gradually being ripped up and "eaten" by the [[Milky Way]]. It is thought these kinds of events may be quite common in the evolution of large galaxies. The Sagittarius dwarf galaxy is orbiting our galaxy at almost a right angle to the disk. It is currently passing through the disk; stars are being stripped off of it with each pass and joining the halo of our galaxy. There are other examples of these minor accretion events, and it is likely a continual process for many galaxies. Such mergers provide "new" gas, stars, and dark matter to galaxies. Evidence for this process is often observable as warps or streams coming out of galaxies.
| |
| | |
| The [[Lambda-CDM model]] of galaxy formation underestimates the number of thin disk galaxies in the universe.<ref>{{cite journal | last = Steinmetz | first = M. | coauthors = Navarro, J.F. | year = 2002 | journal = New Astronomy | title = The hierarchical origin of galaxy morphologies | arxiv = astro-ph/0202466 | volume = 7 | issue = 4 | pages = 155–160 | doi = 10.1016/S1384-1076(02)00102-1|bibcode = 2002NewA....7..155S }}</ref> The reason is that these galaxy formation models predict a large number of mergers. If disk galaxies merge with another galaxy of comparable mass (at least 15 percent of its mass) the merger will likely destroy, or at a minimum greatly disrupt the disk, yet the resulting galaxy is not expected to be a disk galaxy. While this remains an unsolved problem for astronomers, it does not necessarily mean that the [[Lambda-CDM model]] is completely wrong, but rather that it requires further refinement to accurately reproduce the population of galaxies in the universe.
| |
| | |
| ==Galaxy mergers and the formation of elliptical galaxies==
| |
| | |
| [[Image:Abell S740, cropped to ESO 325-G004.jpg|thumb|220px|left|ESO 325-G004, a typical elliptical galaxy.]]
| |
| [[Image:NGC4676.jpg|thumb|220px|left|An image of NGC 4676 (also called the [[Mice Galaxies]]) is an example of a present merger. ]]
| |
| | |
| {{Main|Galaxy merger}}
| |
| | |
| The most massive galaxies in the sky are giant [[elliptical galaxy|elliptical galaxies]]. Their stars are on orbits that are randomly oriented within the galaxy (i.e. they are not rotating like disk galaxies). They are composed of old stars and have little to no dust. All elliptical galaxies probed so far have [[supermassive black hole]]s in their center, and the mass of these black holes is correlated with the mass of the elliptical galaxy. They are also correlated to a property called [[Sigma (cosmology)|sigma]] which is the speed of the stars at the far edge of the elliptical galaxies. Elliptical galaxies do not have disks around them, although some [[bulge (astronomy)|bulges]] of disk galaxies look similar to elliptical galaxies. One is more likely to find elliptical galaxies in more crowded regions of the universe (such as [[galaxy clusters]]).
| |
| | |
| Astronomers now see elliptical galaxies as some of the most evolved systems in the universe. It is widely accepted that the main driving force for the evolution of elliptical galaxies is mergers of smaller galaxies. These mergers can be extremely violent; galaxies often collide at speeds of 500 kilometers per second.
| |
| | |
| Many galaxies in the universe are gravitationally bound to other galaxies, that is to say they will never escape the pull of the other galaxy. If the galaxies are of similar size, the resultant galaxy will appear similar to neither of the two galaxies merging,<ref>Barnes,J. Nature, vol. 338, March 9, 1989, p. 123-126</ref> but would instead be an [[elliptical galaxy]]. An image of an ongoing merger of equal sized disk galaxies is shown left.
| |
| | |
| [[Image:Antennae galaxies xl.jpg|thumb|200px|right|The [[Antennae Galaxies]] are a dramatic pair of colliding galaxies. In such a collision, the stars within each galaxy will pass by each other (virtually) without incident. This is due to the relatively large interstellar distances compared to the relatively small size of an individual star. Diffuse gas clouds, however, readily collide to produce shocks which in turn stimulate bursts of star formation. The bright, blue knots indicate the hot, young stars that have recently ignited as a result of the merger. ]]
| |
| | |
| In the [[Local Group]], the Milky Way and M31 (the [[Andromeda Galaxy]]) are gravitationally bound, and currently approaching each other at high speed. If the two galaxies do meet they will pass through each other, with gravity distorting both galaxies severely and ejecting some gas, dust and stars into [[intergalactic space]]. They will travel apart, slow down, and then again be drawn towards each other, and again collide. Eventually both galaxies will have merged completely, streams of gas and dust will be flying through the space near the newly formed giant elliptical galaxy. M31 is actually already distorted: the edges are warped. This is probably because of interactions with its own galactic companions, as well as possible mergers with dwarf spheroidal galaxies in the recent past - the remnants of which are still visible in the disk populations.
| |
| | |
| In our epoch, large concentrations of galaxies ([[groups and clusters of galaxies|clusters]] and [[supercluster]]s) are still assembling.
| |
| | |
| While scientists have learned a great deal about ours and other galaxies, the most fundamental questions about formation and evolution remain only tentatively answered.
| |
| | |
| == See also ==
| |
| {{colbegin|2}}
| |
| * [[Bulge (astronomy)]]
| |
| * [[Disc (galaxy)]]
| |
| * [[Galactic coordinate system]]
| |
| * [[Galactic corona]]
| |
| * [[Galactic halo]]
| |
| * [[Galaxy rotation problem]]
| |
| * [[Pea galaxy]]
| |
| * [[Zeldovich pancake]]
| |
| * [[Metallicity distribution function]]
| |
| * [[Mass segregation]]
| |
| * [[Timeline of the Big Bang]]
| |
| * [[Chronology of the universe]]
| |
| * [[Big Bang]]
| |
| * [[Stellar formation]]
| |
| * [[Structure formation]]
| |
| * [[Formation and evolution of the Solar System]]
| |
| {{colend}}
| |
| | |
| ==References==
| |
| {{reflist}}
| |
| | |
| ==External links==
| |
| * [http://www.noao.edu/image_gallery/galaxies.html NOAO gallery of galaxy images]
| |
| ** [http://www.noao.edu/image_gallery/html/im0685.html Image of Andromeda galaxy (M31)]
| |
| * [http://www.astro.yale.edu/dokkum/evocalc/ Javascript passive evolution calculator] for early type (elliptical) galaxies
| |
| * [http://spacegeek.org/ep4_flash.shtml Video on the evolution of galaxies by Canadian astrophysicist Doctor P]
| |
| | |
| {{Galaxy}}
| |
| | |
| [[Category:Galaxies|Formation and evolution]]
| |
| [[Category:Stellar evolution]]
| |
You understand or a doctor has told we which you have hemorrhoids: today what is the greatest hemorrhoid treatment. What is the best way to get rid of hemorrhoids?
Try to apply petroleum jelly to the region where we have hemorrhoid. You usually feel better in no time following applying several. You might feel the symptoms are almost gone. Well, utilize of petroleum jelly is considered as the most affordable and painless hemorrhoids surgery.
Step 4 - Take Heed Wiping. Additionally to wiping gently, you ought to avoid utilizing toilet tissue or any alternative product that is color treated, scented or has chemicals that may make your hemorrhoids worse. Moisten a toilet tissue or invest inside a hypo-allergenic wipe such as the ones chosen for diaper rash. Create sure the wipes may be flushed too..
If you will ask wellness practitioners they normally suggest surgery in getting rid of your hemorrhoid. The procedures in surgery are relatively simple and to get out o the painful condition when you are performed treating it.
There are 2 types of hemorrhoids- internal and exterior. Both are the result of swollen veins in the anal area. Internal hemorrhoids is hard to discover because they are not noticeable. You'll just discover out later whenever it starts to bleed. On the additional hand, outside hemorrhoids is felt because a difficult lump in the anal opening. These are generally truly noticeable because which they are swollen, red, itchy, and surprisingly painful.
Ice is regarded as the simplest yet the most effective hemorrhoid treatments you are able to utilize to lower swelling, swelling, bleeding and pain. Wrap it in chipped shape in a piece of cheese fabric and apply it onto the hemorrhoid itself.
As far because the fast fix for pain plus itching is concerned, nature furthermore provides inside the form of herbal remedies, sitz baths and believe it or not, ice chips. These techniques not only work quick, however they are safe. This really is especially wise news for expecting women whom have to be thoughtful when using treatments.