|
|
Line 1: |
Line 1: |
| In [[mathematical analysis]] '''Hölder's inequality''', named after [[Otto Hölder]], is a fundamental [[inequality (mathematics)|inequality]] between [[Lebesgue integration|integrals]] and an indispensable tool for the study of [[Lp space|{{math|''L<sup>p</sup>''}} spaces]].
| | Many people will try and go it alone in the search engine optimisation process and in the vast majority of cases this can be an incorrect decision and doesn"t get deliver the outcome for your site within the search engines a seo specialist might get you. <br><br>You must ask yourself.. if you are seriously considering doing your sites optimization yourself. <br><br>There are numerous reasons your website needs a search engine marketing (SEO) guide to assist your website accomplish more. <br><br>Many people will try and go it alone in the search engine marketing process and in the majority of cases this is an incorrect decision and does not get deliver the outcomes on your website within the search engines that a seo guide could easily get you. <br><br>If you are seriously considering doing all of your websites optimisation yourself you have to ask yourself the following questions: <br><br>1.How important can be your time? <br><br>As a business owner your time is extremely important and isn"t normally best spent attempting to optimize your site, it is normally better spent running your [http://www.dailymail.co.uk/home/search.html?sel=site&searchPhrase=business business]. Several website owners believe that they"ll save money by optimising their very own website but this rarely turns out to be the case. Research engine optimization is a time consuming and complex process and should not be underestimated, and after all if you"re committing all of the time wanting to be a search engine optimisation consultant and optimising your site, whos running your business? <br><br>2.Do you have the skills? <br><br>Optimising an internet site is a complicated process and not at all something that will just be acquired and trained in five minutes. Discover further on this related essay by visiting [http://www.forbes.com/sites/devinthorpe/2013/05/18/why-csr-the-benefits-of-corporate-social-responsibility-will-move-you-to-act/4 wholesale marketing company orange county]. You"ll find hundreds of criteria the search engines will use to analyse websites and a great SEO specialist will know about them all. <br><br>3.Can you will get it right? <br><br>This is where many diyers get is wrong and finding it wrong when it comes to seo is a big issue. To explore additional info, please consider taking a gaze at: [http://www.pinterest.com/seoorangecounty/ related site]. To explore additional information, you might require to have a glance at: [http://www.forbes.com/sites/devinthorpe/2013/05/18/why-csr-the-benefits-of-corporate-social-responsibility-will-move-you-to-act/4 orange county seo company]. Every great Search Engine Optimization guide knows that there are particular issues that should be avoided at all costs. If you do not know very well what you"re doing and make the error of falling foul to at least one of these might problems then your website may go from hero to zero and then your website ends up banned from the major search engines. <br><br>4.Arent you biased? <br><br>Most website owners are partial and feel they know most useful when it comes with their website but this often results in many dilemmas including the [http://Www.Dict.cc/?s=age-old age-old] issue of perhaps not to be able to see the wood for the trees. One of the major problems comes when choosing keywords while the keywords people look for are typically not the keywords site owners believe them to be. An Search Engine Optimization consultant knows this and can ensure the right keywords are employed and not overlooked. <br><br>5.Can you keep it up? <br><br>Search engine optimisation can be an ongoing means of optimising, testing and assessment. It is not at all something that can be done once and left alone so you must ensure you are in it for the long run. <br><br>The bottom line is if you"re serious about your search engine marketing plan and your organization then you need an experienced Search Engine Optimisation expert..<br><br>Here is more about natural health magazine, [http://www.iamsport.org/pg/blog/reflectivewall731 click through the up coming webpage], stop by our site. |
| | |
| Let {{math|(''S'', Σ, ''μ'')}} be a [[measure space]] and let {{math|''p'', ''q'' ∈}} {{closed-closed|1, ∞}} with {{math|1/''p'' + 1/''q'' {{=}} 1}}. Then, for all [[measurable function|measurable]] [[real number|real]]- or [[complex number|complex]]-valued [[function (mathematics)|functions]] {{mvar|f}} and {{mvar|g}} on {{mvar|S}},
| |
| | |
| :<math>\|fg\|_1 \le \|f\|_p \|g\|_q.</math>
| |
| | |
| The numbers {{mvar|p}} and {{mvar|q}} above are said to be '''Hölder conjugates''' of each other. The special case {{math|''p'' {{=}} ''q'' {{=}} 2}} gives a form of the [[Cauchy–Schwarz inequality]].
| |
| | |
| Hölder's inequality holds even if {{math|{{!!}}''fg''{{!!}}<sub>1</sub>}} is infinite, the right-hand side also being infinite in that case. Conversely, if {{mvar|f}}  is in {{math|''L<sup>p</sup>''(''μ'')}} and {{mvar|g}} is in {{math|''L<sup>q</sup>''(''μ'')}}, then the pointwise product {{math|''fg''}} is in {{math|''L''<sup>1</sup>(''μ'')}}.
| |
| | |
| For {{math|''p'', ''q'' ∈}} {{open-open|1, ∞}} and {{math|''f'' ∈ ''L<sup>p</sup>''(''μ'')}} and {{math|''g'' ∈ ''L<sup>q</sup>''(''μ'')}}, Hölder's inequality becomes an equality if and only if {{math|{{!}}''f'' {{!}}<sup>''p''</sup>}} and {{math|{{!}}''g'' {{!}}<sup>''q''</sup>}} are [[Linear dependence|linearly dependent]] in {{math|''L''<sup>1</sup>(''μ'')}}, meaning that there exist real numbers {{math|''α'', ''β'' ≥ 0}}, not both of them zero, such that {{math|''α'' {{!}}''f'' {{!}}<sup>''p''</sup> {{=}} ''β'' {{!}}''g''{{!}}<sup>''q''</sup>}} {{mvar|μ}}-[[almost everywhere]].
| |
| | |
| Hölder's inequality is used to prove the [[Minkowski inequality]], which is the [[triangle inequality]] in the space {{math|''L<sup>p</sup>''(''μ'')}}, and also to establish that {{math|''L<sup>q</sup>''(''μ'')}} is the [[dual space]] of {{math|''L<sup>p</sup>''(''μ'')}} for {{math|''p'' ∈}} {{closed-open|1, ∞}}.
| |
| | |
| Hölder's inequality was first found by {{harvtxt|Rogers|1888}}, and discovered independently by {{harvtxt|Hölder|1889}}.
| |
| | |
| ==Remarks==
| |
| | |
| ===Conventions===
| |
| The brief statement of Hölder's inequality uses some conventions.
| |
| | |
| * In the definition of Hölder conjugates, {{math|1/ ∞}} means zero.
| |
| | |
| * If {{math|''p'', ''q'' ∈}} {{closed-open|1, ∞}}, then {{math|{{!!}}''f'' {{!!}}<sub>''p''</sup>}} and {{math|{{!!}}''g''{{!!}}<sub>''q''</sup>}} stand for the (possibly infinite) expressions
| |
| | |
| ::<math>\biggl(\int_S |f|^p\,\mathrm{d}\mu\biggr)^{1/p}</math> and <math>\biggl(\int_S |g|^q\,\mathrm{d}\mu\biggr)^{1/q}.</math> | |
| | |
| * If {{math|''p'' {{=}} ∞}}, then {{math|{{!!}}''f'' {{!!}}<sub>∞</sup>}} stands for the [[essential supremum]] of {{math|{{!}}''f'' {{!}}}}, similarly for {{math|{{!!}}''g''{{!!}}<sub>∞</sup>}}.
| |
| | |
| * The notation {{math|{{!!}}''f'' {{!!}}<sub>''p''</sup>}} with {{math|1 ≤ ''p'' ≤ ∞}} is a slight abuse, because in general it is only a [[norm (mathematics)|norm]] of {{mvar|f}}  if {{math|{{!!}}''f'' {{!!}}<sub>''p''</sup>}} is finite and {{mvar|f}}  is considered as [[equivalence class]] of {{mvar|μ}}-almost everywhere equal functions. If {{math|''f'' ∈ ''L<sup>p</sup>''(''μ'')}} and {{math|''g'' ∈ ''L<sup>q</sup>''(''μ'')}}, then the notation is adequate.
| |
| | |
| * On the right-hand side of Hölder's inequality, 0 times ∞ as well as ∞ times 0 means 0. Multiplying {{math|''a'' > 0}} with ∞ gives ∞.
| |
| | |
| ===Estimates for integrable products===
| |
| As above, let {{mvar|f}}  and {{mvar|g}} denote measurable real- or complex-valued functions defined on {{mvar|S}}. If {{math|{{!!}}''fg''{{!!}}<sub>1</sup>}} is finite, then the pointwise products of {{mvar|f}}  with {{mvar|g}} and its [[complex conjugate]] function, respectively, are {{mvar|μ}}-integrable, the estimates
| |
| | |
| :<math>\biggl|\int_S f\bar g\,\mathrm{d}\mu\biggr|\le\int_S|fg|\,\mathrm{d}\mu =\|fg\|_1</math>
| |
| | |
| and the similar one for {{math|''fg''}} hold, and Hölder's inequality can be applied to the right-hand side. In particular, if {{mvar|f}}  and {{mvar|g}} are in the [[Hilbert space]] {{math|''L''<sup>2</sup>(''μ'')}}, then Hölder's inequality for {{math|''p'' {{=}} ''q'' {{=}} 2}} implies
| |
| | |
| :<math>|\langle f,g\rangle| \le \|f\|_2 \|g\|_2\,,</math>
| |
| | |
| where the angle brackets refer to the [[inner product]] of {{math|''L''<sup>2</sup>(''μ'')}}. This is also called [[Cauchy–Schwarz inequality]], but requires for its statement that {{math|{{!!}}''f'' {{!!}}<sub>2</sup>}} and {{math|{{!!}}''g''{{!!}}<sub>2</sup>}} are finite to make sure that the inner product of {{mvar|f}}  and {{mvar|g}} is well defined.
| |
| We may recover the original inequality (for the case {{math|''p'' {{=}} 2}}) by using the functions {{math|{{!}}''f'' {{!}}}} and {{math|{{!}}''g''{{!}}}} in place of {{mvar|f}}  and {{mvar|g}}.
| |
| | |
| ===Generalization for probability measures===
| |
| If {{math|(''S'', Σ, ''μ'')}} is a [[probability space]], then {{math|''p'', ''q'' ∈}} {{closed-closed|1, ∞}} just need to satisfy {{math|1/''p'' + 1/''q'' ≤ 1}}, rather than being Hölder conjugates. A combination of Hölder's inequality and [[Jensen's inequality]] implies that
| |
| | |
| :<math>\|fg\|_1 \le \|f\|_p \|g\|_q</math>
| |
| | |
| for all measurable real- or complex-valued functions {{mvar|f}}  and {{mvar|g}} on {{mvar|S}},
| |
| | |
| ==Notable special cases==
| |
| For the following cases assume that {{mvar|p}} and {{mvar|q}} are in the open interval {{open-open|1,∞}} with {{math|1/''p'' + 1/''q'' {{=}} 1}}.
| |
| | |
| ===Counting measure===
| |
| In the case of {{mvar|n}}-dimensional [[Euclidean space]], when the set {{mvar|S}} is {{math|{{mset|1, …, ''n''}}}} with the [[counting measure]], we have
| |
| | |
| :<math>\sum_{k=1}^n |x_k\,y_k| \le \biggl( \sum_{k=1}^n |x_k|^p \biggr)^{\!1/p\;} \biggl( \sum_{k=1}^n |y_k|^q \biggr)^{\!1/q}
| |
| \text{ for all }(x_1,\ldots,x_n),(y_1,\ldots,y_n)\in\mathbb{R}^n\text{ or }\mathbb{C}^n.</math>
| |
| | |
| If {{math|''S'' {{=}} ℕ}} with the counting measure, then we get Hölder's inequality for [[sequence space]]s:
| |
| | |
| :<math>\sum\limits_{k=1}^{\infty} |x_k\,y_k| \le \biggl( \sum_{k=1}^{\infty} |x_k|^p \biggr)^{\!1/p\;} \biggl( \sum_{k=1}^{\infty} |y_k|^q \biggr)^{\!1/q}
| |
| \text{ for all }(x_k)_{k\in\mathbb N}, (y_k)_{k\in\mathbb N}\in\mathbb{R}^{\mathbb N}\text{ or }\mathbb{C}^{\mathbb N}.</math>
| |
| | |
| ===Lebesgue measure===
| |
| If {{mvar|S}} is a measurable subset of {{math|ℝ<sup>''n''</sup>}} with the [[Lebesgue measure]], and {{mvar|f}}  and {{mvar|g}} are measurable real- or complex-valued functions on {{mvar|S}}, then Hölder inequality is
| |
| | |
| :<math>\int_S \bigl| f(x)g(x)\bigr| \,\mathrm{d}x \le\biggl(\int_S |f(x)|^p\,\mathrm{d}x\biggr)^{\!1/p\;} \biggl(\int_S |g(x)|^q\,\mathrm{d}x\biggr)^{\!1/q}.</math>
| |
| | |
| ===Probability measure===
| |
| For the [[probability space]] {{math|(Ω, {{mathcal|F}}, ℙ)}}, let {{math|'''E'''}} denote the [[expected value|expectation operator]]. For real- or complex-valued [[random variable]]s {{mvar|X}} and {{mvar|Y}} on {{math|Ω}}, Hölder's inequality reads
| |
| | |
| :<math> {\mathbb E}\bigl[|XY|\bigr] \le \bigl({\mathbb E}\bigl[|X|^p\bigr]\bigr)^{1/p}\; \bigl( {\mathbb E}\bigl[|Y|^q\bigr]\bigr)^{1/q}.</math>
| |
| | |
| Let {{math|0 < ''r'' < ''s''}} and define {{math|''p'' {{=}} ''s''/''r''}}. Then {{math|''q'' {{=}} ''p''/(''p'' − 1)}} is the Hölder conjugate of {{mvar|''p''}}. Applying Hölder's inequality to the random variables {{math|{{!}}''X'' {{!}}<sup>''r''</sup>}} and {{math|1<sub>Ω</sub>}}, we obtain
| |
| | |
| :<math>{\mathbb E}\bigl[|X|^r\bigr]\le\bigl({\mathbb E}\bigl[|X|^s\bigr]\bigr)^{r/s}.</math>
| |
| | |
| In particular, if the {{mvar|s}}<sup>th</sup> absolute [[moment (mathematics)|moment]] is finite, then the {{mvar|r}}<sup> th</sup> absolute moment is finite, too. (This also follows from [[Jensen's inequality]].)
| |
| | |
| ===Product measure===
| |
| For two [[σ-finite measure|σ-finite]] measure spaces {{math|(''S''<sub>1</sub>, Σ<sub>1</sub>, ''μ''<sub>1</sub>)}} and {{math|(''S''<sub>2</sub>, Σ<sub>2</sub>, ''μ''<sub>2</sub>)}} define the [[product measure space]] by
| |
| | |
| :<math>S=S_1\times S_2,\quad \Sigma=\Sigma_1\otimes\Sigma_2,\quad \mu=\mu_1\otimes\mu_2,</math>
| |
| | |
| where {{mvar|S}} is the [[Cartesian product]] of {{math|''S''<sub>1</sub>}} and {{math|''S''<sub>2</sub>}}, the {{nowrap|[[σ-algebra]] {{math|Σ}}}} arises as [[product σ-algebra]] of {{math|Σ<sub>1</sub>}} and {{math|Σ<sub>2</sub>}}, and {{mvar|μ}} denotes the [[product measure]] of {{math|''μ''<sub>1</sub>}} and {{math|''μ''<sub>2</sub>}}. Then [[Fubini%27s_theorem#Tonelli.27s_theorem|Tonelli's theorem]] allows us to rewrite Hölder's inequality using iterated integrals: If {{mvar|f}}  and {{mvar|g}} are {{nowrap|{{math|Σ}}-measurable}} real- or complex-valued functions on the Cartesian product {{mvar|S}}, then
| |
| | |
| :<math>\begin{align}
| |
| \int_{S_1}&\int_{S_2}|f(x,y)\,g(x,y)|\,\mu_2(\mathrm{d}y)\,\mu_1(\mathrm{d}x)\\
| |
| &\le\biggl(\int_{S_1}\int_{S_2}|f(x,y)|^p\,\mu_2(\mathrm{d}y)\,\mu_1(\mathrm{d}x)\biggr)^{\!1/p\;}\biggl(\int_{S_1}\int_{S_2}|g(x,y)|^q\,\mu_2(\mathrm{d}y)\,\mu_1(\mathrm{d}x)\biggr)^{\!1/q}.\end{align}</math>
| |
| | |
| This can be generalized to more than two {{nowrap|σ-finite}} measure spaces.
| |
| | |
| ===Vector-valued functions===
| |
| Let {{math|(''S'', Σ, ''μ'')}} denote a {{nowrap|σ-finite}} measure space and suppose that {{math|''f'' {{=}} (''f''<sub>1</sub>, …, ''f<sub>n</sub>'')}} and {{math|''g'' {{=}} (''g''<sub>1</sub>, …, ''g<sub>n</sub>'')}} are {{nowrap|{{math|Σ}}-measurable}} functions on {{mvar|S}}, taking values in the {{mvar|n}}-dimensional real- or complex Euclidean space. By taking the product with the counting measure on {{math|{{mset|1, …, ''n''}}}}, we can rewrite the above product measure version of Hölder's inequality in the form
| |
| | |
| :<math>\begin{align}
| |
| \int_S&\sum_{k=1}^n|f_k(x)\,g_k(x)|\,\mu(\mathrm{d}x)\\
| |
| &\le\biggl(\int_S\sum_{k=1}^n|f_k(x)|^p\,\mu(\mathrm{d}x)\biggr)^{\!1/p\;}\biggl(\int_S\sum_{k=1}^n|g_k(x)|^q\,\mu(\mathrm{d}x)\biggr)^{\!1/q}.\end{align}</math>
| |
| | |
| If the two integrals on the right-hand side are finite, then equality holds if and only if there exist real numbers {{math|''α'', ''β'' ≥ 0}}, not both of them zero, such that
| |
| | |
| :<math>\alpha(|f_1(x)|^p,\ldots,|f_n(x)|^p)=\beta(|g_1(x)|^q,\ldots,|g_n(x)|^q)</math> for {{mvar|μ}}-almost all {{mvar|x}} in {{mvar|S}}.
| |
| | |
| This finite-dimensional version generalizes to functions {{mvar|f}}  and {{mvar|g}} taking values in a [[sequence space]].
| |
| | |
| == Proof of Hölder's inequality ==
| |
| There are several proofs of Hölder's inequality; the main idea in the following is [[Young's inequality]].
| |
| | |
| If {{math|{{!!}}''f'' {{!!}}<sub>''p''</sup> {{=}} 0}}, then {{mvar|f}}  is zero {{mvar|μ}}-almost everywhere, and the product {{math|''fg''}} is zero {{mvar|μ}}-almost everywhere, hence the left-hand side of Hölder's inequality is zero. The same is true if {{math|{{!!}}''g''{{!!}}<sub>''q''</sup> {{=}} 0}}. Therefore, we may assume {{math|{{!!}}''f'' {{!!}}<sub>''p''</sup> > 0}} and {{math|{{!!}}''g''{{!!}}<sub>''q''</sup> > 0}} in the following.
| |
| | |
| If {{math|{{!!}}''f'' {{!!}}<sub>''p''</sup> {{=}} ∞}} or {{math|{{!!}}''g''{{!!}}<sub>''q''</sup> {{=}} ∞}}, then the right-hand side of Hölder's inequality is infinite. Therefore, we may assume that {{math|{{!!}}''f'' {{!!}}<sub>''p''</sup>}} and {{math|{{!!}}''g''{{!!}}<sub>''q''</sup>}} are in {{open-open|0, ∞}}.
| |
| | |
| If {{math|''p'' {{=}} ∞}} and {{math|''q'' {{=}} 1}}, then {{math|{{!}}''fg''{{!}} ≤ {{!!}}''f'' {{!!}}<sub>∞</sup> {{!}}''g''{{!}}}} almost everywhere and Hölder's inequality follows from the monotonicity of the Lebesgue integral. Similarly for {{math|''p'' {{=}} 1}} and {{math|''q'' {{=}} ∞}}. Therefore, we may also assume {{math|''p'', ''q'' ∈}} {{open-open|1, ∞}}.
| |
| | |
| Dividing {{mvar|f}}  and {{mvar|g}} by {{math|{{!!}}''f'' {{!!}}<sub>''p''</sup>}} and {{math|{{!!}}''g''{{!!}}<sub>''q''</sup>}}, respectively, we can assume that
| |
| | |
| :<math>\|f\|_p = \|g\|_q = 1.</math>
| |
| | |
| We now use Young's inequality, which states that
| |
| | |
| :<math>a b \le \frac{a^p}p + \frac{b^q}q</math>
| |
| | |
| for all nonnegative {{mvar|a}} and {{mvar|b}}, where equality is achieved if and only if {{math|''a<sup>p</sup>'' {{=}} ''b<sup>q</sup>''}}. Hence
| |
| | |
| :<math>|f(s)g(s)| \le \frac{|f(s)|^p}p + \frac{|g(s)|^q}q,\qquad s\in S.</math>
| |
| | |
| Integrating both sides gives
| |
| | |
| :<math>\|fg\|_1 \le \frac{1}p + \frac{1}q = 1,</math>
| |
| | |
| which proves the claim.
| |
| | |
| Under the assumptions {{math|''p'' ∈}} {{open-open|1, ∞}} and {{math|{{!!}}''f'' {{!!}}<sub>''p''</sub> {{=}} {{!!}}''g''{{!!}}<sub>''q''</sub> {{=}} 1}}, equality holds if and only if {{math|{{!}}''f'' {{!}}<sup>''p''</sup> {{=}} {{!}}''g''{{!}}<sup>''q''</sup>}} almost everywhere. More generally, if {{math|{{!!}}''f'' {{!!}}<sub>''p''</sub>}} and {{math|{{!!}}''g''{{!!}}<sub>''q''</sub>}} are in {{open-open|0, ∞}}, then Hölder's inequality becomes an equality if and only if there exist real numbers {{math|''α'', ''β'' > 0}}, namely
| |
| | |
| :<math>\alpha=\|g\|_q^q</math> and <math>\beta=\|f\|_p^p,</math>
| |
| | |
| such that
| |
| | |
| :<math>\alpha |f|^p = \beta |g|^q\,</math> ''μ''-almost everywhere (*).
| |
| | |
| The case {{math|{{!!}}''f'' {{!!}}<sub>''p''</sub> {{=}} 0}} corresponds to {{math|''β'' {{=}} 0}} in (*). The case {{math|{{!!}}''g''{{!!}}<sub>''q''</sub> {{=}} 0}} corresponds to {{math|''α'' {{=}} 0}} in (*).
| |
| | |
| == Extremal equality ==
| |
| | |
| === Statement ===
| |
| Assume that {{math|1 ≤ ''p'' < ∞}} and let {{mvar|q}} denote the Hölder conjugate. Then, for every {{math|''f'' ∈ ''L<sup>p</sup>''(''μ'')}},
| |
| | |
| :<math>\|f\|_p = \max \Bigl\{ \Bigl| \int_S f g \, \mathrm{d}\mu \Bigr| : g\in L^q(\mu),\,\|g\|_q \le 1 \Bigr\},</math>
| |
| | |
| where max indicates that there actually is a {{mvar|g}} maximizing the right-hand side. When {{math|''p'' {{=}} ∞}} and if each set {{mvar|A}} in the {{nowrap|σ-field}} {{math|Σ}} with {{math|''μ''(''A'') {{=}} ∞}} contains a subset {{math|''B'' ∈ Σ}} with {{math|0 < ''μ''(''B'') < ∞}} (which is true in particular when {{mvar|μ}} is {{nowrap|[[σ-finite]]}}), then
| |
| | |
| :<math>\|f\|_\infty = \sup \Bigl\{ \Bigl| \int_S f g \,\mathrm{d}\mu \Bigr| : g\in L^1(\mu),\,\|g\|_1 \le 1 \Bigr\}.</math>
| |
| | |
| <div style="clear:both;width:95%;" class="NavFrame">
| |
| <div class="NavHead" style="background-color:#FFFAF0; text-align:left; font-size:larger;">Proof of the extremal equality</div>
| |
| <div class="NavContent" style="text-align:left;display:none;">
| |
| | |
| By Hölder's inequality, the integrals are well defined and, for {{math|1 ≤ ''p'' ≤ ∞}},
| |
| | |
| :<math>\Bigl|\int_S fg\,\mathrm{d}\mu\Bigl|\le\int_S|fg|\,\mathrm{d}\mu\le\|f\|_p\,,</math>
| |
| | |
| hence the left-hand side is always bounded above by the right-hand side.
| |
| | |
| Conversely, for {{math|1 ≤ ''p'' ≤ ∞}}, observe first that the statement is obvious when {{math|{{!!}}''f'' {{!!}}<sub>''p''</sub> {{=}} 0}}. Therefore, we assume {{math|{{!!}}''f'' {{!!}}<sub>''p''</sub> > 0}} in the following.
| |
| | |
| If {{math|1 ≤ ''p'' < ∞}}, define {{mvar|g}} on {{mvar|S}} by
| |
| | |
| :<math>g(x) = \begin{cases}\|f\|_p^{1-p} \, |f(x)|^p / f(x)&\text{if }f(x)\not=0,\\ 0&\text{otherwise.}\end{cases}</math>
| |
| | |
| By checking the cases {{math|''p'' {{=}} 1}} and {{math|1 < ''p'' < ∞}} separately, we see that {{math|{{!!}}''g''{{!!}}<sub>''q''</sub> {{=}} 1}} and
| |
| | |
| :<math>\int_S f g \, \mathrm{d}\mu = \|f\|_p\,.</math>
| |
| | |
| It remains to consider the case {{math|''p'' {{=}} ∞}}. For {{math|''ε'' ∈}} {{open-open|0, 1}} define
| |
| | |
| :<math>A=\bigl\{x\in S:|f(x)|>(1-\varepsilon)\|f\|_\infty\bigr\}.</math>
| |
| | |
| Since {{mvar|f}}  is measurable, {{math|''A'' ∈ Σ}}. By the definition of {{math|{{!!}}''f'' {{!!}}<sub>∞</sub>}} as the [[essential supremum]] of {{mvar|f}}  and the assumption {{math|{{!!}}''f'' {{!!}}<sub>∞</sub> > 0}}, we have {{math|''μ''(''A'') > 0}}. Using the additional assumption on the {{nowrap|σ-field}} {{math|Σ}} if necessary, there exists a subset {{math|''B'' ∈ Σ}} of {{mvar|A}} with {{math|0 < ''μ''(''B'') < ∞}}. Define {{mvar|g}} on {{mvar|S}} by
| |
| | |
| :<math>g(x)=\begin{cases}\frac{1-\varepsilon}{\mu(B)}\frac{\|f\|_\infty}{f(x)}&\text{if }x\in B,\\0&\text{otherwise.}\end{cases}</math>
| |
| | |
| Then {{mvar|g}} is well-defined, measurable and {{math|{{!}}''g''(''x''){{!}} ≤ 1/''μ''(''B'')}} for {{math|''x'' ∈ ''B''}}, hence {{math|{{!!}}''g''{{!!}}<sub>1</sub> ≤ 1}}. Furthermore,
| |
| | |
| :<math>\Bigl|\int_S fg\,\mathrm{d}\mu\Bigr| = \int_B\frac{1-\varepsilon}{\mu(B)}\|f\|_\infty\,\mathrm{d}\mu = (1-\varepsilon)\|f\|_\infty.</math>
| |
| </div>
| |
| </div>
| |
| | |
| === Remarks and examples ===
| |
| * The equality for {{math|''p'' {{=}} ∞}} fails whenever there exists a set {{mvar|A}} in the {{nowrap|σ-field}} {{math|Σ}} with {{math|''μ''(''A'') {{=}} ∞}} that has ''no subset'' {{math|''B'' ∈ Σ}} with {{math|0 < ''μ''(''B'') < ∞}} (the simplest example is the {{nowrap|σ-field}} {{math|Σ}} containing just the empty set and {{mvar|S}}, and the measure {{mvar|μ}} with {{math|''μ''(''S'') {{=}} ∞}}. Then the [[indicator function]] {{math|1<sub>''A''</sup>}} satisfies {{math|{{!!}}1<sub>''A''</sub>{{!!}}<sub>∞</sub> {{=}} 1}}, but every {{math|''g'' ∈ ''L''<sup>1</sup>(''μ'')}} has to be {{mvar|μ}}-almost everywhere constant on {{mvar|A}}, because it is {{nowrap|{{math|Σ}}-measurable}}, and this constant has to be zero, because {{mvar|g}} is {{nowrap|{{mvar|μ}}-integrable}}. Therefore, the above supremum for the indicator function {{math|1<sub>''A''</sub>}} is zero and the extremal equality fails.
| |
| * For {{math|''p'' {{=}} ∞}}, the supremum is in general not attained. As an example, let {{mvar|S}} denote the natural numbers (without zero), {{math|Σ}} the power set of {{mvar|S}}, and {{mvar|μ}} the counting measure. Define {{math|''f'' (''n'') {{=}} (''n'' − 1)/''n''}} for every natural number {{mvar|n}}. Then {{math|{{!!}}''f'' {{!!}}<sub>∞</sub> {{=}} 1}}. For {{math|''g'' ∈ ''L''<sup>1</sup>(''μ'')}} with {{math|0 < {{!!}}''g''{{!!}}<sub>1</sub> ≤ 1}}, let {{mvar|m}} denote the smallest natural number with {{math|''g''(''m'') ≠ 0}}. Then
| |
| | |
| ::<math>\Bigl|\int_S fg\,\mathrm{d}\mu\Bigr| \le \frac{m-1}{m}|g(m)|+\sum_{n=m+1}^\infty|g(n)| = \|g\|_1-\frac{|g(m)|}m<1.</math>
| |
| | |
| === Applications ===
| |
| *The extremal equality is one of the ways for proving the triangle inequality {{math|{{!!}}''f''<sub>1</sub> + ''f''<sub>2</sub>{{!!}}<sub>''p''</sub> ≤ {{!!}}''f''<sub>1</sub>{{!!}}<sub>''p''</sub> + {{!!}}''f''<sub>2</sub>{{!!}}<sub>''p''</sub>}} for all {{math|''f''<sub>1</sub>}} and {{math|''f''<sub>2</sub>}} in {{math|''L<sup>p</sup>''(''μ'')}}, see [[Minkowski inequality]].
| |
| | |
| *Hölder's inequality implies that every {{math|''f'' ∈ ''L<sup>p</sup>''(''μ'')}} defines a bounded (or continuous) linear functional {{math|''κ<sub>f</sub>''}}  on {{math|''L<sup>q</sup>''(''μ'')}} by the formula
| |
| ::<math>\kappa_f(g) = \int_S f g \, \mathrm{d}\mu,\qquad g\in L^q(\mu).</math>
| |
| :The extremal equality (when true) shows that the norm of this functional {{math|''κ<sub>f</sub>''}}  as element of the [[continuous dual space]] {{math|''L<sup>q</sup>''(''μ'')<sup>*</sup>}} coincides with the norm of {{mvar|f}}  in {{math|''L<sup>p</sup>''(''μ'')}} (see also the {{nowrap|[[L^p-space|{{math|''L<sup>p</sup>''}}-space]]}} article).
| |
| | |
| ==Generalization of Hölder's inequality==
| |
| Assume that {{math|''r'' ∈}} {{open-open|0, ∞}} and {{math|''p''<sub>1</sup>, …, ''p<sub>n</sup>'' ∈ }} {{open-closed|0, ∞}} such that
| |
| | |
| :<math>\sum_{k=1}^n \frac1{p_k}=\frac1r.</math>
| |
| | |
| Then, for all measurable real- or complex-valued functions {{math|''f''<sub>1</sub>, …, ''f<sub>n</sup>''}} defined on {{mvar|S}},
| |
| | |
| :<math>\biggl\|\prod_{k=1}^n f_k\biggr\|_r\le \prod_{k=1}^n\|f_k\|_{p_k}.</math>
| |
| | |
| In particular,
| |
| | |
| :<math>f_k\in L^{p_k}(\mu)\;\;\forall k\in\{1,\ldots,n\}\implies\prod_{k=1}^n f_k \in L^r(\mu).</math>
| |
| | |
| '''Note:'''
| |
| * For {{math|''r'' ∈}} {{open-open|0, 1}}, contrary to the notation, {{math|{{!!}}.{{!!}}<sub>''r''</sub>}} is in general not a norm, because it doesn't satisfy the [[triangle inequality]].
| |
| | |
| <div style="clear:both;width:95%;" class="NavFrame">
| |
| <div class="NavHead" style="background-color:#FFFAF0; text-align:left; font-size:larger;">Proof of the generalization</div>
| |
| <div class="NavContent" style="text-align:left;display:none;">
| |
| | |
| We use Hölder's inequality and [[mathematical induction]]. For {{math|''n'' {{=}} 1}}, the result is obvious. Let us now pass from {{math|''n'' − 1}} to {{mvar|n}}. Without loss of generality assume that {{math|''p''<sub>1</sup> ≤ … ≤ ''p<sub>n</sup>''}}.
| |
| | |
| '''Case 1:''' If {{math|''p<sub>n</sub>'' {{=}} ∞}}, then
| |
| | |
| :<math>\sum_{k=1}^{n-1}\frac1{p_k}=\frac1r.</math>
| |
| | |
| Pulling out the essential supremum of {{math|{{!}}''f<sub>n</sub>''{{!}}}} and using the induction hypothesis, we get
| |
| :<math>\begin{align} \|f_1\cdots f_n\|_r &\le \|f_1\cdots f_{n-1}\|_r \|f_n\|_\infty\\
| |
| &\le\|f_1\|_{p_1}\cdots\|f_{n-1}\|_{p_{n-1}}\|f_n\|_\infty.\end{align}</math>
| |
| | |
| '''Case 2:''' If {{math|''p<sub>n</sub>'' < ∞}}, then
| |
| | |
| :<math>p:=\frac{p_n}{p_n-r}</math> and <math>q:=\frac{p_n}r</math>
| |
| | |
| are Hölder conjugates in {{open-open|1, ∞}}. Application of Hölder's inequality gives
| |
| | |
| :<math>\bigl\||f_1\cdots f_{n-1}|^r\,|f_n|^r\bigr\|_1
| |
| \le\bigl\||f_1\cdots f_{n-1}|^r\bigr\|_p\,\bigl\||f_n|^r\bigr\|_q.</math>
| |
| | |
| Raising to the power {{math|1/''r''}} and rewriting,
| |
| | |
| :<math>\|f_1\cdots f_n\|_r \le \|f_1\cdots f_{n-1}\|_{pr}\|f_n\|_{qr}.</math>
| |
| | |
| Since {{math|''qr'' {{=}} ''p<sub>n</sub>''}} and
| |
| | |
| :<math>\sum_{k=1}^{n-1}\frac1{p_k} = \frac1r-\frac1{p_n} = \frac{p_n-r}{rp_n} = \frac1{pr}\,,</math>
| |
| | |
| the claimed inequality now follows by using the induction hypothesis.
| |
| | |
| </div>
| |
| </div>
| |
| | |
| ===Interpolation===
| |
| Let {{math|''p''<sub>1</sup>, …, ''p<sub>n</sup>'' ∈}} {{open-closed|0, ∞}} and let {{math|''θ''<sub>1</sup>, …, ''θ<sub>n</sup>'' ∈}} {{open-open|0, 1}} denote weights with {{math|''θ''<sub>1</sup> + … + ''θ<sub>n</sup>'' {{=}} 1}}. Define {{mvar|p}} as the weighted [[harmonic mean]], i.e.,
| |
| | |
| :<math> \frac 1p= \sum_{k=1}^n \frac {\theta_k}{p_k}.</math>
| |
| | |
| Given a measurable real- or complex-valued function {{mvar|f}}  on {{mvar|S}}, define
| |
| | |
| :<math>f_k=|f|^{\theta_k},\quad k\in\{1,\ldots,n\}.</math>
| |
| | |
| Then by the above generalization of Hölder's inequality,
| |
| | |
| :<math>\|f\|_p=\biggl\|\prod_{k=1}^n f_k\biggr\|_p\le \prod_{k=1}^n \|f_k\|_{p_k/\theta_k}=\prod_{k=1}^n \|f\|_{p_k}^{\theta_k}.</math>
| |
| | |
| In particular, taking
| |
| {{math|''θ''<sub>1</sub> {{=}} θ}}
| |
| and {{math|''θ''<sub>2</sub> {{=}} 1 − ''θ''}},
| |
| in the case {{math|''n'' {{=}} 2}}, we obtain the [[Riesz-Thorin theorem|interpolation]] result
| |
| | |
| :<math>\| f\|_{p_\theta}\le \|f\|_{p_1}^\theta \cdot \|f\|_{p_0}^{1-\theta},</math>
| |
| for {{math|''θ'' ∈}} {{open-open|0, 1}} and
| |
| | |
| :<math>\frac 1p_\theta= \frac \theta {p_1}+ \frac {1-\theta}{p_0}.</math>
| |
| <!--P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge University Presse 1991, [http://books.google.com/books?id=Re4pqY72Bo8C&printsec=frontcover&dq=banach+spaces+for+analysts+wojtaszczyk&ei=HP2pSrX9H6CGygS7qfmGCg&hl=de#v=onepage&q=&f=false]</ref>-->
| |
| | |
| == Reverse Hölder inequality ==
| |
| Assume that {{math|''p'' ∈}} {{open-open|1, ∞}} and that the measure space {{math|(''S'', Σ, ''μ'')}} satisfies {{math|''μ''(''S'') > 0}}. Then, for all measurable real- or complex-valued functions {{mvar|f}}  and {{mvar|g}} on {{mvar|S}} such that {{math|''g''(''s'') ≠ 0}} for {{nowrap|{{mvar|μ}}-almost}} all {{math|''s'' ∈ ''S''}},
| |
| | |
| :<math>\|fg\|_1\ge\|f\|_{1/p}\,\|g\|_{-1/(p-1)}.</math>
| |
| | |
| If {{math|{{!!}}''fg''{{!!}}<sub>1</sub> < ∞}} and {{math|{{!!}}''g''{{!!}}<sub>−1/(''p'' −1)</sub> > 0}}, then the reverse Hölder inequality is an equality if and only if there exists an {{math|''α'' ≥ 0}} such that
| |
| | |
| :<math>|f| = \alpha|g|^{-p/(p-1)}\,</math> {{mvar|μ}}-almost everywhere.
| |
| | |
| '''Note:''' {{math|{{!!}}''f'' {{!!}}<sub>1/''p''</sub>}} and {{math|{{!!}}''g''{{!!}}<sub>−1/(''p'' −1)</sub>}} are not norms, these expressions are just compact notation for
| |
| | |
| :<math>\biggl(\int_S|f|^{1/p}\,\mathrm{d}\mu\biggr)^{\!p}</math> and <math>\biggl(\int_S|g|^{-1/(p-1)}\,\mathrm{d}\mu\biggr)^{-(p-1)}.</math>
| |
| | |
| <div style="clear:both;width:95%;" class="NavFrame">
| |
| <div class="NavHead" style="background-color:#FFFAF0; text-align:left; font-size:larger;">Proof of the reverse Hölder inequality</div>
| |
| <div class="NavContent" style="text-align:left;display:none;">
| |
| | |
| Note that {{mvar|p}} and
| |
| | |
| :<math>q:=\frac{p}{p-1}\in(1,\infty)</math>
| |
| | |
| are Hölder conjugates. Application of Hölder's inequality gives
| |
| | |
| :<math>\begin{align} \bigl\||f|^{1/p}\bigr\|_1 &= \bigl\||fg|^{1/p}\,|g|^{-1/p}\bigr\|_1\\
| |
| &\le \bigl\||fg|^{1/p}\bigr\|_p\,\bigl\||g|^{-1/p}\bigr\|_q
| |
| =\|fg\|_1^{1/p}\,\bigl\||g|^{-1/(p-1)}\bigr\|_1^{(p-1)/p}.\end{align}</math>
| |
| | |
| Raising to the power {{mvar|p}}, rewriting and solving for {{math|{{!!}}''fg''{{!!}}<sub>1</sub>}} gives the reverse Hölder inequality.
| |
| | |
| Since {{mvar|g}} is not almost everywhere equal to the zero function, we can have equality if and only if there exists a constant {{math|''α'' ≥ 0}} such that {{math|{{!}}''fg''{{!}} {{=}} ''α'' {{!}}''g''{{!}}<sup>−''q''/''p''</sup>}} almost everywhere. Solving for the absolute value of {{mvar|f}}  gives the claim.
| |
| | |
| </div>
| |
| </div>
| |
| | |
| == Conditional Hölder inequality ==
| |
| Let {{math|(Ω, {{mathcal|F}}, ℙ)}} be a probability space, {{math|{{mathcal|G}} ⊂ {{mathcal|F}}}} a {{nowrap|sub-[[σ-algebra]]}}, and {{math|''p'', ''q'' ∈}} {{open-open| 1, ∞}} Hölder conjugates, meaning that {{math|1/''p'' + 1/''q'' {{=}} 1}}. Then, for all real- or complex-valued random variables {{mvar|X}} and {{mvar|Y}} on {{math|Ω}},
| |
| | |
| :<math>\mathbb{E}\bigl[|XY|\big|\,\mathcal{G}\bigr]
| |
| \le
| |
| \bigl(\mathbb{E}\bigl[|X|^p\big|\,\mathcal{G}\bigr]\bigr)^{1/p}
| |
| \,\bigl(\mathbb{E}\bigl[|Y|^q\big|\,\mathcal{G}\bigr]\bigr)^{1/q}
| |
| | |
| \qquad\mathbb{P}\text{-almost surely.}</math>
| |
| | |
| '''Remarks:'''
| |
| * If a non-negative random variable {{mvar|Z}} has infinite [[expected value]], then its [[conditional expectation]] is defined by
| |
| | |
| ::<math>\mathbb{E}[Z|\mathcal{G}] = \sup_{n\in\mathbb{N}}\,\mathbb{E}[\min\{Z,n\}|\mathcal{G}]\quad\text{a.s.}</math>
| |
| | |
| * On the right-hand side of the conditional Hölder inequality, 0 times ∞ as well as ∞ times 0 means 0. Multiplying {{math|''a'' > 0}} with ∞ gives ∞.
| |
| | |
| <div style="clear:both;width:95%;" class="NavFrame">
| |
| <div class="NavHead" style="background-color:#FFFAF0; text-align:left; font-size:larger;">Proof of the conditional Hölder inequality</div>
| |
| <div class="NavContent" style="text-align:left;display:none;">
| |
| | |
| Define the random variables
| |
| | |
| :<math>U=\bigl(\mathbb{E}\bigl[|X|^p\big|\,\mathcal{G}\bigr]\bigr)^{1/p},\qquad V=\bigl(\mathbb{E}\bigl[|Y|^q\big|\,\mathcal{G}\bigr]\bigr)^{1/q}</math>
| |
| | |
| and note that they are measurable with respect to the {{nowrap|sub-σ-algebra}}. Since
| |
| | |
| :<math>\mathbb{E}\bigl[|X|^p1_{\{U=0\}}\bigr]
| |
| = \mathbb{E}\bigl[1_{\{U=0\}}\underbrace{\mathbb{E}\bigl[|X|^p\big|\,\mathcal{G}\bigr]}_{=\,U^p}\bigr]=0,</math>
| |
| | |
| it follows that {{math|{{!}}''X'' {{!}} {{=}} 0}} a.s. on the set {{math|{{mset|''U'' {{=}} 0}}}}. Similarly, {{math|{{!}}''Y'' {{!}} {{=}} 0}} a.s. on the set {{math|{{mset|''V'' {{=}} 0}}}}, hence
| |
| | |
| :<math>\mathbb{E}\bigl[|XY|\big|\,\mathcal{G}\bigr]=0\qquad\text{a.s. on }\{U=0\}\cup\{V=0\}</math>
| |
| | |
| and the conditional Hölder inequality holds on this set. On the set
| |
| | |
| :<math>\{U=\infty, V>0\}\cup\{U>0, V=\infty\}</math>
| |
| | |
| the right-hand side is infinite and the conditional Hölder inequality holds, too. Dividing by the right-hand side, it therefore remains to show that
| |
| | |
| :<math>\frac{\mathbb{E}\bigl[|XY|\big|\,\mathcal{G}\bigr]}{UV}\le1
| |
| \qquad\text{a.s. on the set }H:=\{0<U<\infty,\,0<V<\infty\}.</math>
| |
| | |
| This is done by verifying that the inequality holds after integration over an arbitrary
| |
| | |
| :<math>G\in\mathcal{G},\quad G\subset H.</math>
| |
| | |
| Using the measurability of {{mvar|U}}, {{mvar|V}}, {{math|1<sub>''G''</sub>}} with respect to the {{nowrap|sub-σ-algebra}}, the rules for conditional expectations, Hölder's inequality and {{math|1/''p'' + 1/''q'' {{=}} 1}}, we see that
| |
| | |
| :<math>\begin{align}
| |
| \mathbb{E}\biggl[\frac{\mathbb{E}\bigl[|XY|\big|\,\mathcal{G}\bigr]}{UV}1_G\biggr]
| |
| &=\mathbb{E}\biggl[\mathbb{E}\biggl[\frac{|XY|}{UV}1_G\bigg|\,\mathcal{G}\biggr]\biggr]\\
| |
| &=\mathbb{E}\biggl[\frac{|X|}{U}1_G\cdot\frac{|Y|}{V}1_G\biggr]\\
| |
| &\le\biggl(\mathbb{E}\biggl[\frac{|X|^p}{U^p}1_G\biggr]\biggr)^{\!1/p\;}
| |
| \biggl(\mathbb{E}\biggl[\frac{|Y|^q}{V^q}1_G\biggr]\biggr)^{\!1/q}\\
| |
| &=\biggl(\mathbb{E}\biggl[\underbrace{\frac{\mathbb{E}\bigl[|X|^p\big|\,\mathcal{G}\bigr]}{U^p}}_{=\,1\text{ a.s. on }G}1_G\biggr]\biggr)^{\!1/p\;}
| |
| \biggl(\mathbb{E}\biggl[\underbrace{\frac{\mathbb{E}\bigl[|Y|^q\big|\,\mathcal{G}\bigr]}{V^p}}_{=\,1\text{ a.s. on }G}1_G\biggr]\biggr)^{\!1/q}\\
| |
| &=\mathbb{E}\bigl[1_G\bigr].
| |
| \end{align}</math>
| |
| </div>
| |
| </div>
| |
| | |
| {{more footnotes|date=April 2012}}
| |
| | |
| ==Hölder's inequality for increasing seminorms==
| |
| Let {{mvar|S}} be a set and let {{math|''F''(''S'', ℂ)}} be the space of all complex-valued functions on {{mvar|S}}. Let {{mvar|N}} be an increasing [[seminorm]] on {{math|''F''(''S'', ℂ)}}, meaning that, for all real-valued functions {{mvar|f}}  and {{mvar|g}} in {{math|''F''(''S'', ℂ)}}, if {{math|''f'' (''s'') ≥ ''g''(''s'') ≥ 0}} for all {{math|''s'' ∈ ''S''}}, then {{math|''N''(''f'' ) ≥ ''N''(''g'')}}. The seminorm is also allowed to attain the value ∞. Then, for all {{math|''p'', ''q'' ∈}} {{open-open|1, ∞}} with {{math|1/''p'' + 1/''q'' {{=}} 1}}, which means that they are conjugate Hölder exponents, and for all complex-valued functions {{math|''f'', ''g'' ∈ ''F''(''S'', ℂ)}},<ref>For a proof see {{harv|Trèves|1967|loc=Lemma 20.1, pp. 205–206}}</ref>
| |
| | |
| :<math>N(|fg|) \le \bigl(N(|f|^p)\bigr)^{1/p} \bigl(N(|g|^q)\bigr)^{1/q}.</math>
| |
| | |
| '''Remark:''' If {{math|(''S'', Σ, ''μ'')}} is a [[measure space]] and {{math|''N''(''f'' )}} is the upper Lebesgue integral of the absolute value {{math|{{!}}''f'' {{!}}}}, then the restriction of {{mvar|N}} to all {{nowrap|{{math|Σ}}-measurable}} functions gives the usual version of Hölder's inequality.
| |
| | |
| ==Citations==
| |
| {{reflist}}
| |
| | |
| ==References==
| |
| *{{citation
| |
| |first=G. H.
| |
| |last=Hardy
| |
| |author-link = Godfrey Harold Hardy
| |
| |first2= J. E.
| |
| |last2=Littlewood
| |
| |author2-link=John Edensor Littlewood
| |
| |first3= G.
| |
| |last3= Pólya
| |
| |author3-link= George Pólya
| |
| |title=Inequalities
| |
| |publisher= [[Cambridge University Press]]
| |
| |pages=XII+314
| |
| |year=1934
| |
| |isbn=0-521-35880-9
| |
| |jfm=60.0169.01
| |
| |mr=
| |
| |zbl=0010.10703
| |
| }}.
| |
| *{{citation
| |
| |first=O.
| |
| |last= Hölder
| |
| |author-link = Otto Hölder
| |
| |title= Ueber einen Mittelwertsatz
| |
| |journal= Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen
| |
| |series=Band
| |
| |url = http://resolver.sub.uni-goettingen.de/purl?GDZPPN00252421X
| |
| |volume = 1889
| |
| |issue =2
| |
| |year = 1889
| |
| |language = [[German language|German]]
| |
| |pages = 38–47
| |
| |jfm = 21.0260.07
| |
| }}. Available at [http://www.digizeitschriften.de/index.php?id=64&L=2 Digi Zeitschriften].
| |
| *{{springer
| |
| | id = H/h047514
| |
| | first = L. P.
| |
| | last = Kuptsov
| |
| | title = Hölder inequality
| |
| }}.
| |
| *{{Citation
| |
| | last = Rogers
| |
| | first = L. J.
| |
| | author-link = Leonard James Rogers
| |
| | title = An extension of a certain theorem in inequalities
| |
| | journal = [[Messenger of Mathematics]]
| |
| | series = New Series
| |
| | volume = XVII
| |
| | issue = 10
| |
| | pages = 145–150
| |
| |date=February 1888
| |
| | url = http://www.archive.org/details/messengermathem01unkngoog
| |
| | archiveurl = http://www.archive.org/stream/messengermathem01unkngoog#page/n183/mode/1up
| |
| | archivedate = August 21, 2007
| |
| | jfm = 20.0254.02
| |
| }}.
| |
| *{{Citation
| |
| | last = Trèves
| |
| | first = François
| |
| | title = Topological Vector Spaces, Distributions and Kernels
| |
| | publisher = Academic Press
| |
| | place = New York, London
| |
| | series = Pure and Applied Mathematics. A Series of Monographs and Textbooks
| |
| | volume = 25
| |
| | year = 1967
| |
| | mr = 0225131
| |
| | zbl = 0171.10402
| |
| }}.
| |
| | |
| ==External links==
| |
| *{{Citation
| |
| | last=Kuttler
| |
| | first=Kenneth
| |
| | title=An Introduction to Linear Algebra
| |
| | publisher=Online e-book in PDF format, Brigham Young University
| |
| | url=http://www.math.byu.edu/~klkuttle/Linearalgebra.pdf
| |
| | year=2007
| |
| | isbn=
| |
| }}.
| |
| *{{Citation
| |
| |last=Lohwater
| |
| |first=Arthur
| |
| |title=Introduction to Inequalities
| |
| |format=PDF
| |
| |url=http://www.mediafire.com/?1mw1tkgozzu
| |
| |year=1982
| |
| |isbn=
| |
| }}.
| |
| | |
| {{DEFAULTSORT:Holder's inequality}}
| |
| [[Category:Inequalities]]
| |
| [[Category:Probabilistic inequalities]]
| |
| [[Category:Functional analysis]]
| |
| [[Category:Articles containing proofs]]
| |