Pentagram: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Huntster
m Reverted 1 edit by 71.12.205.68 (talk) to last revision by Jmrowland. (TW)
en>Huntster
Undid revision 597864801 by 75.138.160.94 (talk)
Line 1: Line 1:
{{For|individual balls that are sometimes incorrectly called "ball bearings"|Ball (bearing)}}
However this isn't completely surprising, considering a large waist (excess belly fat) is tied carefully to type 2 diabetes, insulin resistance, a poor cholesterol profile plus heart disease. Excess fat inside the abdomen indicates excess fat surrounding the abdominal organs -- never wise news; this form of fat is risky.<br><br>Why a male swimmer's body is really sexy is considering they have low body fat ratio so that their well toned muscles is seen plus not covered by too much body fat. Although low in body fat, swimmers body fat ratio are not as low because professional bodybuilders during competition whose bodies have veins popping out with ripped railway track definitions. The swimmer's body is defined by Wisegeek because a high amount of muscle tone with a lack of bulk and is a universally appealing body form.<br><br>He is providing 7 principles for a healthier living. Next, he advises us to understand the numbers. The body mass index ought to be between 18.5 plus 24.9. The waist to height ratio should be lower than half your height. Know the number of calories we want and spend inside a day. Know the amount of fruits plus veggies a day we eat. Understand how countless hours we sleep each night. Getting lower than eight hours sleep chronically is associated with cognitive decline.<br><br>Waist circumference, for illustration is selected to determine abdominal fat content. An excess of abdominal fat, when out of proportion to total body fat, is considered a predictor of risk factors connected to weight. Men with a waist measurement exceeding 40 inches are considered at risk. Women are at risk with a waist measuring of 35 inches or better.<br><br>BMI could never be chosen to determine a persons total body fat percentage because it refuses to consider lean body mass like muscle or bone. BMI is calculated by dividing body weight (kg) by height (meters squared). BMI is an indicator of present wellness whenever selected with sedentary people. A BMI of 18.5 - 24.9 is considered general.<br><br>Another reason that the waist to height ratio is valuable is considering it follows the aged and common shape theory that is mostly associated with female where several females are pears, apples, etc. The [http://safedietplansforwomen.com/waist-to-height-ratio waist to height ratio] can tell you what exactly is the natural body form . Waist height ratios are fairly consistent to overall health compared to things like total fat. In fact the ratio is so consistent to ones overall health that it will even be employed to tell things like in the event you are a university swimmer , a typical athlete plus different degrees of athletic ability or wellness.<br><br>This was a short bit of info regarding the fat for ladies by height. The body mass index (BMI) is another wise technique of calculating a ideal weight range by height.<br><br>Percentage body fat is something which is done at the practitioners or by experts in the region. It is performed by measuring fat below folds of skin. Usually at the waist, hips and thighs. This might not be truly accurate because individuals age as the fat distribution inside the body changes as you receive elder. Its more accurate for individuals below 40 particularly nevertheless it nonetheless functions OK until age of 55. The accuracy begins to decrease within the age of 40 onwards.
[[Image:BallBearing.gif|thumb|Working principle for a ball bearing]]
[[Image:Four-point-contact-bearing din628 type-qj 180-ex.png|thumb|A 4 point angular contact ball bearing]]
[[Image:Ball Bearing with Semi Transparent Cover.JPG|thumb|A ball bearing with a semi transparent cage]]
[[Image:Ball bearing self aligning.gif|thumb|[[Sven Gustaf Wingqvist|Wingquist's]] and SKF's self-aligning ball bearing]]
A '''ball bearing''' is a type of [[rolling-element bearing]] that uses [[ball (bearing)|balls]] to maintain the separation between the [[bearing (mechanical)|bearing]] [[race (bearing)|races]].
 
The purpose of a ball bearing is to reduce rotational friction and support [[radius|radial]] and [[axis of rotation|axial]] loads. It achieves this by using at least two races to contain the balls and transmit the loads through the balls. In most applications, one race is stationary and the other is attached to the rotating assembly (e.g., a hub or shaft). As one of the bearing races rotates it causes the balls to rotate as well. Because the balls are rolling they have a much lower [[coefficient of friction]] than if two flat surfaces were sliding against each other.
 
Ball bearings tend to have lower [[structural load|load capacity]] for their size than other kinds of rolling-element bearings due to the smaller contact area between the balls and races. However, they can tolerate some misalignment of the inner and outer races.
 
==History==
{{Main|Bearing (mechanical)#History|l1=History of bearings}}
 
Although roller bearings had been developed since ancient times, the first modern recorded [[patent]] on ball bearings was awarded to [[Philip Vaughan]], a [[United Kingdom|British]] inventor and [[ironmaster]] who created the first design for a ball bearing in [[Carmarthen]] in 1794. His was the first modern ball-bearing design, with the ball running along a groove in the axle assembly.<ref>{{cite web|url=http://www.intechbearing.com/5200Series-DoubleRowAngularContactBallBearings-SealsandShields-Shop.html|title=Double- Row Angular Contact Ball Bearings}}</ref>
 
[[Jules Suriray]], a Parisian bicycle mechanic, designed the first radial style ball bearing in 1869,<ref>See:
*  Suriray, [http://books.google.com/books?id=8S0UAAAAYAAJ&pg=PA647#v=onepage&q&f=false "Perfectionnements dans les vélocipèdes"] (Improvements in bicycles), French patent no. 86,680, issued:  August 2, 1869 , ''Bulletin des lois de la République française'' (1873), series 12, vol. 6, page 647.
*  Louis Baudry de Saunier, ''Histoire générale de la vélocipédie'' [General history of cycling] (Paris, France:  Paul Ollendorff, 1891), [http://books.google.com/books?id=E70UAAAAYAAJ&pg=PA63#v=onepage&q&f=false pages 62-63].</ref> which was then fitted to the winning bicycle ridden by [[James Moore (cyclist)|James Moore]] in the world's first bicycle road race, [[Paris-Rouen]], in November 1869.<ref>[http://www.ibike.org/library/history-timeline.htm Bicycle History, Chronology of the Growth of Bicycling and the Development of Bicycle Technology by David Mozer]. Ibike.org. Retrieved on 2012-09-01.</ref>
 
==Common designs==
There are several common designs of ball bearing, each offering various trade-offs.  They can be made from many different materials, including: [[stainless steel]], [[chrome steel]], and [[ceramic]] ([[silicon nitride]] (Si<sub>3</sub>N<sub>4</sub>)). A hybrid ball bearing is a bearing with ceramic balls and races of metal.
 
=== Angular contact ===
An ''angular contact'' ball bearing uses axially [[asymmetry|asymmetric]] races. An axial load passes in a straight line through the bearing, whereas a radial load takes an oblique path that tends to want to separate the races axially. So the angle of contact on the inner race is the same as that on the outer race. Angular contact bearings better support "combined loads" (loading in both the radial and axial directions) and the contact angle of the bearing should be matched to the relative proportions of each. The larger the contact angle (typically in the range 10 to 45 degrees), the higher the axial load supported, but the lower the radial load. In high speed applications, such as turbines, jet engines, and dentistry equipment, the centrifugal forces generated by the balls changes the contact angle at the inner and outer race. Ceramics such as [[silicon nitride]] are now regularly used in such applications due to their low density (40% of steel). These materials significantly reduce centrifugal force and function well in high temperature environments. They also tend to wear in a similar way to bearing steel—rather than cracking or shattering like glass or porcelain.
 
Most bicycles use angular-contact bearings in the headsets because the forces on these bearings are in both the radial and axial direction.
 
=== Axial ===
An ''axial'' ball bearing uses side-by-side races. An axial load is transmitted directly through the bearing, while a radial load is poorly supported and tends to separate the races,so that a larger radial load is likely to damage the bearing.
 
=== Deep-groove ===
In a ''deep-groove'' radial bearing, the race dimensions are close to the dimensions of the balls that run in it. Deep-groove bearings can support higher loads.
 
==Construction types==
 
=== Conrad ===
The ''Conrad''-style ball bearing is named after its inventor, [[Robert Conrad (inventor)|Robert Conrad]], who was awarded British [[patent]] 12,206 in 1903 and U.S. patent 822,723 in 1906.  These bearings are assembled by placing the inner ring into an eccentric position relative to the outer ring, with the two rings in contact at one point, resulting in a large gap opposite the point of contact.  The balls are inserted through the gap and then evenly distributed around the bearing assembly, causing the rings to become concentric.  Assembly is completed by fitting a cage to the balls to maintain their positions relative to each other.  Without the cage, the balls would eventually drift out of position during operation, causing the bearing to fail. The cage carries no load and serves only to maintain ball position.
 
Conrad bearings have the advantage that they are able to withstand both radial and axial loads, but have the disadvantage of lower load capacity due to the limited number of balls that can be loaded into the bearing assembly. Probably the most familiar industrial ball bearing is the deep-groove Conrad style. The bearing is used in most of the mechanical industries.
 
=== Slot-fill ===
In a ''slot-fill'' radial bearing, the inner and outer races are notched on one face so that when the notches are aligned, balls can be slipped in the resulting slot to assemble the bearing.&nbsp; A slot-fill bearing has the advantage that more balls can be assembled (even allowing a ''full complement'' design), resulting in a higher radial load capacity than a Conrad bearing of the same dimensions and material type.&nbsp; However, a slot-fill bearing cannot carry a significant axial load, and the slots cause a discontinuity in the races that can have a small but adverse effect on strength.&nbsp;
 
=== Relieved Race ===
Relieved race ball bearings are 'relieved' as the name suggests by basically have either the OD of the inner ring reduced on one side, or the OD of the outer ring increased on one side.  This allows a greater number of balls to be assembled into either the inner or outer race, and then press fit over the relief.  Sometimes the outer ring will be heated to facilitate assembly.  Like the slot-fill construction, relieved race construction allows a greater number of balls than Conrad construction, up to and including full complement, and the extra ball count gives extra load capacity.  However, a relieved race bearing can support significant axial loads in one direction ('away from' the relieved race).
 
=== Fractured Race ===
Another way of fitting more balls into a radial ball bearing is by radially 'fracturing' (slicing) one of the rings all the way through, loading the balls in, re-assembling the fractured portion, and then using a pair of steel bands hold the fractured ring sections together in alignment.  Again, this allows more balls, including full ball complement, however unlike with either slot fill or relieved race constructions, it can support significant axial loading in either direction.
 
===Rows===
There are two ''row'' designs: ''single-row'' bearings and ''double-row'' bearings. Most ball bearings are a single-row design, which means there is one row of bearing balls. This design works with radial and thrust loads.<ref name="brumbach">{{Citation | last = Brumbach | first = Michael E. | last2 = Clade | first2 = Jeffrey A. | title = Industrial Maintenance | pages = 112–113 | publisher = Cengage Learning | year = 2003 | url = http://books.google.com/books?id=1wq6eiR7mxEC&pg=PA112 | isbn = 978-0-7668-2695-3 | postscript =.}}</ref>
 
A ''double-row'' design has two rows of bearing balls. Their disadvantage is they need better alignment than single-row bearings.
 
===Flanged===
Bearings with a flange on the outer ring simplify axial location. The housing for such bearings can consist of a through-hole of uniform diameter, but the entry face of the housing (which may be either the outer or inner face) must be machined truly normal to the hole axis. However such flanges are very expensive to manufacture.
A more cost effective arrangement of the bearing outer ring, with similar benefits, is a snap ring groove at either or both ends of the outside diameter. The snap ring assumes the function of a flange.
 
=== Caged ===
Cages are typically used to secure the balls in a Conrad-style ball bearing. In other construction types they may decrease the number of balls depending on the specific cage shape, and thus reduce the load capacity. Without cages the tangential position is stabilized by sliding of two convex surfaces on each other. With a cage the tangential position is stabilized by a sliding of a convex surface in a matched concave surface, which avoids dents in the balls and has lower friction. Caged roller bearings were invented by [[John Harrison]] in the mid-18th century as part of his work on chronographs.<ref>{{cite book|last=Sobel|first=Dava|authorlink=Dava Sobel|title=[[Longitude (book)|Longitude]]|year=1995|publisher=Fourth Estate|location=London|isbn=0-00-721446-4|page=103|quote=A novel antifriction device that Harrison developed for H-3 survives to the present day ...caged ball bearings.}}</ref> Caged bearings were used more frequently during wartime steel shortages for bicycle wheel bearings married to replaceable cups.
 
===Ceramic hybrid ball bearings using ceramic balls===
Ceramic bearing balls can weigh up to 40% less than steel ones, depending on size and material. This reduces centrifugal loading and skidding, so hybrid ceramic bearings can operate 20% to 40% faster than conventional bearings. This means that the outer race groove exerts less force inward against the ball as the bearing spins. This reduction in force reduces the friction and rolling resistance. The lighter balls allow the bearing to spin faster, and uses less energy to maintain its speed.
 
While ceramic hybrid bearings use ceramic balls in place of steel ones, they are constructed with steel inner and outer rings; hence the ''hybrid'' designation.  While the ceramic material itself is stronger than steel, it is also stiffer, which results in increased stresses on the rings, and hence decreased load capacity.  Ceramic balls are electrically insulating, which can prevent 'arcing' failures if current should be passed through the bearing.  Ceramic balls can also be effective in environments where lubrication may not be available (such as in space applications).
 
=== Self-aligning ===<!-- [[Self-aligning ball bearing]] links here -->
[[File:Wingquist bearing00.jpg|thumb|right|[[Sven Gustaf Wingqvist|Wingquist]] developed self-aligning ball bearing from [[SKF]]]]
 
Self-aligning ball bearings, such as the [[Sven Gustaf Wingqvist|Wingquist]] bearing shown above, are constructed with the inner ring and ball assembly contained within an outer ring that has a spherical raceway. This construction allows the bearing to tolerate a small angular misalignment resulting from shaft or housing deflections or improper mounting. The bearing was introduced by [[SKF]] in 1907.<ref>{{cite web|last=Wingquist|first=Sven|title=Original sketches|url=http://www.skf.com/group/news-and-media/media-downloads/history-and-other/index.html?id=21-39174&title=Sven+Wingquist's+original+drawing+of+a+self-aligning+ball+bearing+1907&description=High+resolution+image&format=jpg&fileLength=1.2+MB&width=2098&height=1402&filePath=C:%5CIBM%5CWebSphere%5CAppServer%5Cprofiles%5CAppSrv01%5CinstalledApps%5CPRODAPP1Cell01%5CSKF.com_Presentation_Engine.ear%5CskfComPresentationEngine-0.1.0-SNAPSHOT.war%5CSven%20Wingquist%C2%B4s%20very%20first%20sketch%201907%200901d1968016e85d.jpg&imagePath=/binary/12-98155/full/PH_0003136(1).jpg|publisher=SKF|accessdate=5 December 2013}}</ref> The bearing was used mainly in bearing arrangements with very long shafts, such as transmission shafts in textile factories.<ref>{{cite web|title=Manufacturing and sales|url=http://investors.skf.com/skf-a-global-story/2-moving-forward-at-american-speed/manufacturing-and-sales.php|publisher=SKF|accessdate=5 December 2013}}</ref>
One drawback of the self-aligning ball bearings is a limited load rating, as the outer raceway has very low osculation (radius is much larger than ball radius). This lead to the invention of the [[spherical roller bearing]], which has a similar design, but use rollers instead of balls. Also the [[spherical roller thrust bearing]] is an invention that derives from the findings by [[Sven Gustaf Wingqvist|Wingquist]].
 
==Operating conditions==
 
===Lifespan===
The calculated life for a bearing is based on the load it carries and its operating speed. The industry standard usable bearing lifespan is inversely proportional to the bearing load cubed{{citation needed|date=April 2013}}. Nominal maximum load of a bearing (as specified for example in SKF datasheets), is for a lifespan of 1 million rotations, which at 50&nbsp;Hz (i.e., 3000 RPM) is a lifespan of 5.5 working hours. 90% of bearings of that type have at least that lifespan, and 50% of bearings have a lifespan at least 5 times as long.<ref name="leerboek">"Leerboek wentellagers", SKF, 1985</ref>
 
The industry standard life calculation is based upon the work of Lundberg and Palmgren performed in 1947. The formula assumes the life to be limited by [[Fatigue (material)|metal fatigue]] and that the life distribution can be described by a [[Weibull distribution]]. Many variations of the formula exist that include factors for material properties, lubrication, and loading. Factoring for loading may be viewed as a tacit admission that modern materials demonstrate a different relationship between load and life than Lundberg and Palmgren determined .<ref name="leerboek"/>
 
===Failure modes===
If a bearing is not rotating, maximum load is determined by force that causes plastic deformation of elements or raceways. The identations caused by the elements can concentrate stresses and generate cracks at the components. Maximum load for not or very slowly rotating bearings is called "static" maximum load.<ref name="leerboek"/>
 
For a rotating bearing, the dynamic load capacity indicates the load to which the bearing endures 1.000.000 cycles.
 
If a bearing is rotating, but experiences heavy load that lasts shorter than one revolution, static max load must be used in computations, since the bearing does not rotate during the maximum load.<ref name="leerboek"/>
 
===Maximum load===
In general, maximum load on a ball bearing is proportional to outer diameter of the bearing times width of bearing (where width is measured in direction of axle).<ref name="leerboek"/>
 
Bearings have static load ratings.  These are based on not exceeding a certain amount of plastic deformation in the raceway.  These ratings may be exceeded by a large amount for certain applications.
 
===Lubrication===
For a bearing to operate properly, it needs to be lubricated. In most cases the lubricant is based on [[lubrication|elastohydrodynamic]] effect (by oil or grease) but working at extreme temperatures [[Dry lubricant|dry lubricated]] bearings are also available.
 
For a bearing to have its nominal lifespan at its nominal maximum load, it must be lubricated with a lubricant (oil or grease) that has at least the minimum dynamic viscosity (usually denoted with the Greek letter <math>\nu</math>) recommended for that bearing.<ref name="leerboek"/>
 
The recommended dynamic viscosity is inversely proportional to diameter of bearing.<ref name="leerboek"/>
 
The recommended dynamic viscosity decreases with rotating frequency. As a rough indication: for less than {{nowrap|3000 RPM}}, recommended viscosity increases with factor 6 for a factor 10 decrease in speed, and for more than {{nowrap|3000 RPM}}, recommended viscosity decreases with factor 3 for a factor 10 increase in speed.<ref name="leerboek"/>
 
For a bearing where average of outer diameter of bearing and diameter of axle hole is {{nowrap|50 mm}},  and that is rotating at {{nowrap|3000 RPM}}, recommended dynamic viscosity is {{nowrap|12 mm²/s}}.<ref name="leerboek"/>
 
Note that dynamic viscosity of oil varies strongly with temperature: a temperature increase of {{nowrap|50–70 °C}} causes the viscosity to decrease by factor 10.<ref name="leerboek"/>
 
If the viscosity of lubricant is higher than recommended, lifespan of bearing increases, roughly proportional to square root of viscosity. If the viscosity of the lubricant is lower than recommended, the lifespan of the bearing decreases, and by how much depends on which type of oil being used. For oils with EP ('extreme pressure') additives, the lifespan is proportional to the square root of dynamic viscosity, just as it was for too high viscosity, while for ordinary oil's lifespan is proportional to the square of the viscosity if a lower-than-recommended viscosity is used.<ref name="leerboek"/>
 
Lubrication can be done with a grease, which has advantages that grease is normally held within the bearing releasing the lubricant oil as it is compressed by the balls. It provides a protective barrier for the bearing metal from the environment, but has disadvantages that this grease must be replaced periodically, and maximum load of bearing decreases (because if bearing gets too warm, grease melts and runs out of bearing). Time between grease replacements decreases very strongly with diameter of bearing: for a {{nowrap|40 mm}} bearing, grease should be replaced every 5000 working hours, while for a {{nowrap|100 mm}} bearing it should be replaced every 500 working hours.<ref name="leerboek"/>
 
Lubrication can also be done with an oil, which has advantage of higher maximum load, but needs some way to keep oil in bearing, as it normally tends to run out of it. For oil lubrication it is recommended that for applications where oil does not become warmer than {{nowrap|50 °C}}, oil should be replaced once a year, while for applications where oil does not become warmer than {{nowrap|100 °C}}, oil should be replaced 4 times per year. For car engines, oil becomes {{nowrap|100 °C}} but the engine has an oil filter to continually improve oil quality; therefore, the oil is usually changed less frequently than the oil in bearings.<ref name="leerboek"/>
 
===Direction of load===
Most bearings are meant for supporting loads perpendicular to axle ("radial loads"). Whether they can also bear axial loads, and if so, how much, depends on the type of bearing. [[Thrust bearings]] (commonly found on [[lazy susan]]s) are specifically designed for axial loads.<ref name="leerboek"/>
 
For single-row deep-groove ball bearings, SKF's documentation says that maximum axial load is circa 50% of maximum radial load, but it also says that "light" and/or "small" bearings can take axial loads that are 25% of maximum radial load.<ref name="leerboek"/>
 
For single-row edge-contact ball bearings, axial load can be circa 2 times max radial load,
and for cone-bearings maximum axial load is between 1 and 2 times maximum radial load.<ref name="leerboek"/>
 
Often Conrad style ball bearings will exhibit contact ellipse truncation under axial load.  What that means is that either the ID of the outer ring is large enough, or the OD of the inner ring is small enough, so as to reduce the area of contact between the balls and raceway.  When this is the case, it can significantly increase the stresses in the bearing, often invalidating general rules of thumb regarding relationships between radial and axial load capacity. With construction types other than Conrad, one can further decrease the outer ring ID and increase the inner ring OD to guard against this.
 
If both axial and radial loads are present, they can be added vectorially, to result in total load on bearing, which in combination with nominal maximum load can be used to predict lifespan.<ref name="leerboek"/> However, in order to correctly predict the rating life of ball bearings the ISO/TS 16281 should be used with the help of a calculation software.
 
===Avoiding undesirable axial load===
The part of a bearing that rotates (either axle hole or outer circumference) must be fixed, while for a part that does not rotate this is not necessary (so it can be allowed to slide). If a bearing is loaded axially, both sides must be fixed.<ref name="leerboek"/>
 
If an axle has two bearings, and temperature varies, axle shrinks or expands, therefore it is not admissible for both bearings to be fixed on both their sides, since expansion of axle would exert axial forces that would destroy these bearings. Therefore, at least one of bearings must be able to slide.<ref name="leerboek"/>
 
A 'freely sliding fit' is one where there is at least a 4&nbsp;µm clearance, presumably because surface-roughness of a surface made on a lathe is normally between 1.6 and 3.2&nbsp;µm.<ref name="leerboek"/>
 
===Fit===
Bearings can withstand their maximum load only if the mating parts are properly sized. Bearing manufacturers supply [[Tolerance (engineering)|tolerance]]s for the fit of the shaft and the housing so that this can be achieved. The material and [[hardness]] may also be specified.<ref name="leerboek"/>
 
Fittings that are not allowed to slip are made to diameters that prevent slipping and consequently the mating surfaces cannot be brought into position without force. For small bearings this is best done with a press because tapping with a hammer damages both bearing and shaft, while for large bearings the necessary forces are so great that there is no alternative to heating one part before fitting, so that thermal expansion allows a temporary sliding fit.<ref name="leerboek"/>
 
===Avoiding torsional loads===
If a shaft is supported by two bearings, and the center-lines of rotation of these bearings are not the same, then large forces are exerted on the bearing that may destroy it. Some very small amount of misalignment is acceptable, and how much depends on type of bearing. For bearings that are specifically made to be 'self-aligning', acceptable misalignment is between 1.5 and 3 degrees of arc. Bearings that are not designed to be self-aligning can accept misalignment of only 2–10 minutes of arc.<ref name="leerboek"/>
 
==Applications==
In general, ball bearings are used in most applications that involve moving parts. Some of these applications have specific features and requirements:
 
*[[Hard drive]] bearings used to be highly spherical, and were said to be the best spherical manufactured shapes, but this is no longer true, and more and more are being replaced with [[fluid bearing]]s.
*German ball bearing factories were often a target of allied [[strategic bombing during World War II|aerial bombings during World War II]]; such was the importance of the ball bearing to the German war industry.<ref>{{cite book|last=Speer|first=Albert|authorlink=Albert Speer|title=Inside the Third Reich|publisher=Macmillan|year=1970|location=New York and Toronto|pages=331–347}}</ref>
*In [[horology]], the company [[Jean Lassale]] designed a watch movement that used ball bearings to reduce the thickness of the movement. Using 0.20&nbsp;mm balls, the Calibre 1200 was only 1.2&nbsp;mm thick, which still is the thinnest mechanical watch movement.<ref>{{cite book|last=Brunner|first=Gisbert|title=Wristwatches – Armbanduhren – Montres-bracelets|publisher=Könnemann|year=1999|location=Köln, Germany|ISBN=3-8290-0660-8|page=454}}</ref>
*[[Aerospace bearings]] are used in many applications on commercial, private and military aircraft including pulleys, gearboxes and [[jet engine]] shafts. Materials include M50 tool steel (AMS6491), Carbon chrome steel (AMS6444), the corrosion resistant AMS5930, 440C stainless steel, [[silicon nitride]] (ceramic) and [[titanium carbide]]-coated 440C.
* Skateboard wheels each contain two bearings, which are subject to both axial and radial time-varying loads. Most commonly bearing 608-2Z is used (a deep groove ball bearing from series 60 with 8&nbsp;mm bore diameter)
* [[Yo-Yos]], there are ball bearings in the center of many new, ranging from beginner to professional or competition grade Yo-Yos.
 
==Designation==
{{Main|Rolling-element bearing#Designation|l1=Rolling-element bearing > Designation}}
 
The ball size increases as the series increases, for any given inner diameter or outer diameter (not both). The larger the ball the greater the load carrying capacity. Series 200 and 300 are the most common.<ref name="brumbach"/>
 
==See also==
*[[Ball screw]]
*[[Bearing (mechanical)]]
*[[Bearing Specialists Association]]
*[[Brinelling]], a common failure mode
*[[Linear bearing]]
*[[Thrust bearing]]
*[[Spherical roller bearing]]
 
==References==
{{Reflist}}
 
==External links==
{{Wiktionary}}
{{dmoz|Business/Industrial_Goods_and_Services/Bearings/}}
<!-- DO NOT add links to individual bearing manufacturers -->
 
{{Use dmy dates|date=April 2011}}
 
{{DEFAULTSORT:Ball Bearing}}
[[Category:1869 introductions]]
[[Category:French inventions]]
[[Category:Swedish inventions]]
[[Category:Rolling-element bearings| ]]
 
[[bar:Kuglloga]]
[[de:Kugellager]]
[[no:Kulelager]]

Revision as of 22:48, 2 March 2014

However this isn't completely surprising, considering a large waist (excess belly fat) is tied carefully to type 2 diabetes, insulin resistance, a poor cholesterol profile plus heart disease. Excess fat inside the abdomen indicates excess fat surrounding the abdominal organs -- never wise news; this form of fat is risky.

Why a male swimmer's body is really sexy is considering they have low body fat ratio so that their well toned muscles is seen plus not covered by too much body fat. Although low in body fat, swimmers body fat ratio are not as low because professional bodybuilders during competition whose bodies have veins popping out with ripped railway track definitions. The swimmer's body is defined by Wisegeek because a high amount of muscle tone with a lack of bulk and is a universally appealing body form.

He is providing 7 principles for a healthier living. Next, he advises us to understand the numbers. The body mass index ought to be between 18.5 plus 24.9. The waist to height ratio should be lower than half your height. Know the number of calories we want and spend inside a day. Know the amount of fruits plus veggies a day we eat. Understand how countless hours we sleep each night. Getting lower than eight hours sleep chronically is associated with cognitive decline.

Waist circumference, for illustration is selected to determine abdominal fat content. An excess of abdominal fat, when out of proportion to total body fat, is considered a predictor of risk factors connected to weight. Men with a waist measurement exceeding 40 inches are considered at risk. Women are at risk with a waist measuring of 35 inches or better.

BMI could never be chosen to determine a persons total body fat percentage because it refuses to consider lean body mass like muscle or bone. BMI is calculated by dividing body weight (kg) by height (meters squared). BMI is an indicator of present wellness whenever selected with sedentary people. A BMI of 18.5 - 24.9 is considered general.

Another reason that the waist to height ratio is valuable is considering it follows the aged and common shape theory that is mostly associated with female where several females are pears, apples, etc. The waist to height ratio can tell you what exactly is the natural body form . Waist height ratios are fairly consistent to overall health compared to things like total fat. In fact the ratio is so consistent to ones overall health that it will even be employed to tell things like in the event you are a university swimmer , a typical athlete plus different degrees of athletic ability or wellness.

This was a short bit of info regarding the fat for ladies by height. The body mass index (BMI) is another wise technique of calculating a ideal weight range by height.

Percentage body fat is something which is done at the practitioners or by experts in the region. It is performed by measuring fat below folds of skin. Usually at the waist, hips and thighs. This might not be truly accurate because individuals age as the fat distribution inside the body changes as you receive elder. Its more accurate for individuals below 40 particularly nevertheless it nonetheless functions OK until age of 55. The accuracy begins to decrease within the age of 40 onwards.