|
|
Line 1: |
Line 1: |
| {{Expert-subject|Physics|talk=Negative temperature depends on how entropy is defined|reason=no distinction between Boltzmann and Gibbs definitions of entropy|date=January 2014}}
| |
|
| |
|
| [[File:ColdnessScale.png|right|thumb|[http://www.bipm.org/en/si/ SI] temperature/coldness (1/kT) scale.]]
| |
|
| |
|
| In [[physics]], certain [[system (thermodynamics)|systems]] can achieve '''negative temperature'''; that is, their [[thermodynamic temperature]] can be expressed as a [[negative number|negative]] quantity on the [[Kelvin]] or [[Rankine scale|Rankine]] scales. In colloquial usage, "negative temperature" may refer to temperatures that are expressed as negative numbers on the more familiar [[Celsius]] or [[Fahrenheit]] scales, with values that are colder than the zero points of those scales but still warmer than [[absolute zero]]. By contrast, a system with a truly negative temperature in absolute terms on the Kelvin scale is ''hotter'' than any system with a positive temperature. If a negative-temperature system and a positive-temperature system come in contact, heat will flow from the negative- to the positive-temperature system.<ref>{{cite journal|date=1956-07-01 |title=Thermodynamics and Statistical Mechanics at Negative Absolute Temperatures |journal=Physical Review |volume=103 |issue=1 |pages=20–28 |url=http://link.aps.org/abstract/PR/v103/p20 |doi=10.1103/PhysRev.103.20|bibcode = 1956PhRv..103...20R |authorlink1=Norman Foster Ramsey, Jr.|last1=Ramsey|first1=Norman }}
| | Adrianne Le is the term my parents gave i but you can get a hold of me anything you as. Vermont has always been my home and I love every day living in this case. As a girl what Take into consideration like is to have croquet but I would not make it my line of work really. Filing gives been my profession to remedy time and [http://www.adobe.com/cfusion/search/index.cfm?term=&I%27m+starting&loc=en_us&siteSection=home I'm starting] pretty good financially. You can find my website here: http://prometeu.net<br><br>Look into my blog post [http://prometeu.net Hack Clash Of Clans 2014] |
| </ref><ref>{{cite journal|date=1975-11-18 |title=Comment on: Negative Kelvin temperatures: some anomalies and a speculation |journal=American Journal of Physics |volume=44 |pages=994–995 |url=http://www.physique.usherbrooke.ca/~tremblay/articles/Comment%20on%20%27Negative%20Kelvin%20temperatures,%20Some%20anomalies%20and%20a%20speculation%27.%20Tremblay.pdf|doi=10.1119/1.10248|issue=10|bibcode = 1976AmJPh..44..994T|last1=Tremblay|first1=André-Marie }}</ref>
| |
| | |
| That a system at negative temperature is hotter than any system at positive temperature is paradoxical if absolute temperature is interpreted as an average kinetic energy of the system. The paradox is resolved by understanding temperature through its more rigorous definition as the tradeoff between [[energy]] and [[entropy]], with the ''reciprocal'' of the temperature, [[thermodynamic beta]], as the more fundamental quantity. Systems with a positive temperature will increase in entropy as one adds energy to the system. Systems with a negative temperature will decrease in entropy as one adds energy to the system.<ref>{{Cite book|url=http://books.google.com/books/about/The_Laws_of_Thermodynamics_A_Very_Short.html?id=-7aP0f5O2CMC|pages= 10–14|title=The Laws of Thermodynamics: A Very Short Introduction|isbn=9780199572199|last1=Atkins|first1=Peter W. |date=2010-03-25|publisher= Oxford University Press|oclc=467748903}}</ref>
| |
| | |
| Most familiar systems cannot achieve negative temperatures, because adding energy always increases their entropy. The possibility of decreasing in entropy with increasing energy requires the system to "saturate" in entropy, with the number of high energy states being small. These kinds of systems, ''bounded'' by a maximum amount of energy, are generally forbidden classically. Thus, negative temperature is a strictly [[quantum mechanics|quantum]] phenomenon. Some systems, however (see the [[#Examples|examples]] below), have a maximum amount of energy that they can hold, and as they approach that maximum energy their entropy actually begins to decrease.<ref>{{Cite book|url=http://books.google.com/books/about/The_Laws_of_Thermodynamics_A_Very_Short.html?id=-7aP0f5O2CMC|pages= 89–95|title=The Laws of Thermodynamics: A Very Short Introduction|isbn=9780199572199|last1=Atkins|first1=Peter W.|date=2010-03-25|publisher= Oxford University Press|oclc=467748903}}</ref>
| |
| | |
| ==Heat and molecular energy distribution==
| |
| Negative temperatures can only exist in a system where there are a limited number of energy states (see below). As the temperature is increased on such a system, particles move into higher and higher energy states, and as the temperature increases, the number of particles in the lower energy states and in the higher energy states approaches equality. (This is a consequence of the definition of temperature in [[statistical mechanics]] for systems with limited states.) By injecting energy into these systems in the right fashion, it is possible to create a system in which there are more particles in the higher energy states than in the lower ones. The system can then be characterised as having a negative temperature. A substance with a negative temperature is not colder than [[absolute zero]], but rather it is hotter than infinite temperature. As Kittel and Kroemer (p. 462) put it, "The temperature scale from cold to hot runs:
| |
| | |
| : +0 K, ... , +300 K, ... , +∞ K, −∞ K, ... , −300 K, ... , −0 K."
| |
| | |
| Generally, temperature as it is felt is defined by the kinetic energy of atoms. Since there is no upper bound on momentum of an atom there is no upper bound to the number of energy states available if enough energy is added, and no way to get to a negative temperature. However, temperature is more generally defined by statistical mechanics than just kinetic energy (see below). The inverse temperature ''β'' = 1/''kT'' (where ''k'' is [[Boltzmann's constant]]) scale runs continuously from low energy to high as +∞, ... , −∞.
| |
| | |
| ==Temperature and disorder==
| |
| The distribution of energy among the various [[translation (physics)|translational]], [[oscillation|vibrational]], [[rotation]]al, [[Electron configuration|electronic]], and [[atomic nucleus|nuclear]] modes of a system determines the macroscopic temperature. In a "normal" system, thermal energy is constantly being exchanged between the various modes.
| |
| | |
| However, for some cases, it is possible to isolate one or more of the modes. In practice, the isolated modes still exchange energy with the other modes, but the [[Speed|time scale]] of this exchange is much slower than for the exchanges within the isolated mode. One example is the case of [[atomic nucleus|nuclear]] [[spin (physics)|spins]] in a strong external [[magnetic field]]. In this case, energy flows fairly rapidly among the spin states of interacting atoms, but energy transfer between the nuclear spins and other modes is relatively slow. Since the energy flow is predominantly within the spin system, it makes sense to think of a spin temperature that is distinct from the temperature due to other modes.
| |
| | |
| A definition of [[Temperature#Second law of thermodynamics|temperature]] can be based on the relationship:
| |
| | |
| :<math> | |
| T = \frac{dq_\mathrm{rev}}{dS}
| |
| </math>
| |
| | |
| The relationship suggests that a ''positive temperature'' corresponds to the condition where [[entropy]], ''S'', increases as thermal energy, ''q''<sub>rev</sub>, is added to the system. This is the "normal" condition in the macroscopic world, and is always the case for the translational, vibrational, rotational, and non-spin related electronic and nuclear modes. The reason for this is that there are an [[Infinity|infinite]] number of these types of modes, and adding more heat to the system increases the number of modes that are energetically accessible, and thus increases the entropy.
| |
| | |
| ==Examples==
| |
| | |
| ===Noninteracting two–level particles===
| |
| {{multiple image
| |
| | align = right
| |
| | direction = vertical
| |
| | footer =
| |
| | |
| Entropy, thermodynamic beta, and temperature as a function of the energy for a system of ''N'' noninteracting two–level particles.
| |
| | |
| | width1 = 235
| |
| | image1 = Negative_temperature_S_of_E.png
| |
| | width2 = 235
| |
| | image2 = Negative_temperature_beta_of_E.png
| |
| | width3 = 235
| |
| | image3 = Negative_temperature_T_of_E.png
| |
| }}
| |
| The simplest example, albeit a rather nonphysical one, is to consider a system of ''N'' particles, each of which can take an energy of either ''+ε'' or ''-ε'' but are otherwise noninteracting. This can be understood as a limit of the [[Ising model]] in which the interaction term becomes negligible. The total energy of the system is
| |
| | |
| :<math>E=\epsilon\sum_{i=1}^N \sigma_i = \epsilon \cdot j</math>
| |
| | |
| where ''σ<sub>i</sub>'' is the sign of the ''i''th particle and ''j'' is the number of particles with positive energy minus the number of particles with negative energy. From elementary combinatorics, the total number of [[microstate (statistical mechanics)|microstates]] with this amount of energy is a [[binomial coefficient]]:
| |
| | |
| :<math>\Omega_E=\binom{N}{(N+j)/2} = \frac{N!}{\left(\frac{N+j}{2}\right)! \left(\frac{N - j}{2}\right)!}.</math>
| |
| | |
| By the [[fundamental assumption of statistical mechanics]], the entropy of this [[microcanonical ensemble]] is
| |
| | |
| :<math>S=k_B \ln \Omega_E </math>
| |
| | |
| We can solve for thermodynamic beta (β = 1/k<sub>B</sub>T) by considering it as a [[central difference]] without taking the continuum limit:
| |
| :<math>\begin{align}\beta &= \frac{1}{k_B} \frac{\delta_{2\epsilon}[S]}{2\epsilon} = \frac{1}{2\epsilon} \left( \ln \Omega_{E+\epsilon} - \ln \Omega_{E-\epsilon} \right) \\
| |
| &= \frac{1}{2\epsilon} \ln \left( \frac{\left(\frac{N+j-1}{2}\right)! \left(\frac{N-j+1}{2}\right)!}{\left(\frac{N+j+1}{2}\right)! \left(\frac{N-j-1}{2}\right)!} \right) \\ | |
| &= \frac{1}{2\epsilon} \ln \left( \frac{N-j+1}{N+j+1} \right), \end{align}</math> | |
| hence the temperature
| |
| :<math>T(E)=\frac{2\epsilon}{k_B}\left[\ln \left( \frac{(N+1)\epsilon - E}{(N+1)\epsilon + E} \right)\right]^{-1}.</math>
| |
| | |
| ===Nuclear spins===
| |
| The previous example is an approximate realization of a system of nuclear spins in an external magnetic field.<ref>
| |
| {{cite journal |date=1951-01-15 |title=A Nuclear Spin System at Negative Temperature |journal=Physical Review |volume=81 |issue=2 |pages=279–280 |url=http://link.aps.org/abstract/PR/v81/p279 |doi=10.1103/PhysRev.81.279|bibcode = 1951PhRv...81..279P |authorlink1=Edward Mills Purcell |authorlink2=Robert Pound |last1=Purcell |first1=E. M. |last2=Pound |first2=R. V. }}</ref><ref>{{cite journal|doi=10.1103/PhysRevE.57.6487|title=Minimax games, spin glasses, and the polynomial-time hierarchy of complexity classes|year=1998|last1=Varga|first1=Peter|journal=Physical Review E|volume=57|issue=6|pages=6487–6492|arxiv=abs/cond-mat/9604030|bibcode = 1998PhRvE..57.6487V }}</ref> In the case of electronic and nuclear spin systems, there are only a finite number of modes available, often just two, corresponding to [[spin (physics)#Properties of spin|spin up and spin down]]. In the absence of a [[magnetic field]], these spin states are ''degenerate'', meaning that they correspond to the same energy. When an external magnetic field is applied, the energy levels are split, since those spin states that are aligned with the magnetic field will have a different energy from those that are anti-parallel to it.
| |
| | |
| In the absence of a magnetic field, such a two-spin system would have maximum entropy when half the atoms are in the spin-up state and half are in the spin-down state, and so one would expect to find the system with close to an equal distribution of spins. Upon application of a magnetic field, some of the atoms will tend to align so as to minimize the energy of the system, thus slightly more atoms should be in the lower-energy state (for the purposes of this example we will assume the spin-down state is the lower-energy state). It is possible to add energy to the spin system using [[radio frequency]] (RF) techniques.<ref>{{cite book|last=Ramsey|first=Norman F.|authorlink=Norman Ramsey|title=Spectroscopy with coherent radiation: selected papers of Norman F. Ramsey with commentary|year=1998|publisher=World Scientific|location=Singapore; River Edge, N.J.|isbn= 9789810232504 |pages=417|oclc=38753008|series=World Scientific series in 20th century physics, v. 21}}</ref> This causes atoms to ''flip'' from spin-down to spin-up.
| |
| | |
| Since we started with over half the atoms in the spin-down state, this initially drives the system towards a 50/50 mixture, so the entropy is increasing, corresponding to a positive temperature. However, at some point, more than half of the spins are in the spin-up position. In this case, adding additional energy reduces the entropy, since it moves the system further from a 50/50 mixture. This reduction in entropy with the addition of energy corresponds to a negative temperature.<ref>{{Cite web|url=http://ltl.tkk.fi/triennial/positive.html |title=Positive and negative picokelvin temperatures}}</ref>
| |
| | |
| ===Lasers===
| |
| This phenomenon can also be observed in many [[laser|lasing]] systems, wherein a large fraction of the system's [[atom]]s (for chemical and gas lasers) or [[electron]]s (in [[semiconductor]] lasers) are in excited states. This is referred to as a [[population inversion]].
| |
| | |
| The [[Hamiltonian (quantum mechanics)|Hamiltonian]] for a single mode of a luminescent radiation field at frequency ''ν'' is
| |
| :<math>H=(h\nu - \mu)a^\dagger a. \, </math>
| |
| The density operator in the [[grand canonical ensemble]] is
| |
| :<math>\rho=\frac{\exp(-\beta H)}{\mathbf{Tr}( \exp(-\beta H))}.</math>
| |
| For the system to have a ground state, the trace to converge, and the density operator to be generally meaningful, ''βH'' must be positive semidefinite. So if ''hν'' < ''μ'', and ''H'' is negative semidefinite, then ''β'' must itself be negative, implying a negative temperature.<ref>{{cite journal
| |
| |last1=Hsu |first1=W.
| |
| |last2=Barakat |first2=R.
| |
| |year=1992
| |
| |title=Statistics and thermodynamics of luminescent radiation
| |
| |journal=[[Physical Review B]]
| |
| |volume=46 |issue=11 |pages=6760–6767
| |
| |bibcode=1992PhRvB..46.6760H
| |
| |doi=10.1103/PhysRevB.46.6760
| |
| }}</ref>
| |
| | |
| ===Two-dimensional vortex motion===
| |
| The two-dimensional systems can exist in negative temperature states.<ref>{{cite journal
| |
| |last1=Montgomery |first1=D.C.
| |
| |year=1972
| |
| |title=Two-dimensional vortex motion and "negative temperatures"
| |
| |journal=[[Physics Letters A]]
| |
| |volume=39 |issue=1 |pages=7–8
| |
| |bibcode=1972PhLA...39....7M
| |
| |doi=10.1016/0375-9601(72)90302-7
| |
| }}</ref><ref>
| |
| {{cite journal
| |
| |last1=Edwards |first1=S.F. |authorlink1=Sam Edwards (physicist)
| |
| |last2=Taylor |first2=J.B. |authorlink2=J. Bryan Taylor
| |
| |year=1974
| |
| |title=Negative Temperature States of Two-Dimensional Plasmas and Vortex Fluids
| |
| |journal=[[Proceedings of the Royal Society of London A]]
| |
| |volume=336 |issue=1606 |pages=257–271
| |
| |bibcode=1974RSPSA.336..257E
| |
| |doi=10.1098/rspa.1974.0018
| |
| |jstor=78450
| |
| }}</ref>
| |
| | |
| ===Motional degrees of freedom===
| |
| Negative temperatures have also been achieved in motional [[Degrees of freedom (physics and chemistry)|degrees of freedom]]. Using an [[optical lattice]], upper bounds were placed on the kinetic energy, interaction energy and potential energy of cold {{SimpleNuclide|Potassium|39}} atoms. This was done by tuning the interactions of the atoms from repulsive to attractive using a [[Feshbach resonance]] and changing the overall harmonic potential from trapping to anti-trapping, thus transforming the [[Bose-Hubbard model|Bose-Hubbard Hamiltonian]] from <math>\hat{H} \rightarrow -\hat{H}</math>. Performing this transformation adiabatically while keeping the atoms in the [[Mott insulator]] regime, it is possible to go from a low entropy positive temperature state to a low entropy negative temperature state. In the negative temperature state, the atoms macroscopically occupy the maximum momentum state of the lattice. The negative temperature ensembles equilibrated and showed long lifetimes in an anti-trapping harmonic potential.<ref>{{cite doi | 10.1126/science.1227831}}</ref>
| |
| | |
| ==See also==
| |
| * [[Absolute hot]]
| |
| * [[Negative resistance]]
| |
| | |
| ==References==
| |
| {{Reflist}}
| |
| | |
| * {{cite book
| |
| |last1=Kittel |first1=C. |author1-link=Charles Kittel
| |
| |last2=Kroemer |first2=H. |author2-link=Herbert Kroemer
| |
| |year=1980
| |
| |title=Thermal Physics
| |
| |edition=2nd
| |
| |publisher=[[W. H. Freeman]]
| |
| |isbn=0-7167-1088-9
| |
| }}
| |
| * {{cite book
| |
| |last1=Castle |first1=J.
| |
| |last2=Emmerich |first2=W.
| |
| |last3=Heikes |first3=R.
| |
| |last4=Miller |first4=R.
| |
| |last5=Rayne |first5=J.
| |
| |year=1965
| |
| |title=Science by Degrees: Temperature from Zero to Zero
| |
| |publisher=[[Walker and Company]]
| |
| |lccn=64023985
| |
| }}
| |
| | |
| ==Further reading==
| |
| * {{cite journal|doi=10.1126/science.1227831|title=Negative Absolute Temperature for Motional Degrees of Freedom|year=2013|last1=Braun|first1=S.|last2=Ronzheimer|first2=J. P.|last3=Schreiber|first3=M.|last4=Hodgman|first4=S. S.|last5=Rom|first5=T.|last6=Bloch|first6=I.|last7=Schneider|first7=U.|journal=Science|volume=339|issue=6115|pages=52–5|pmid=23288533 |arxiv = 1211.0545 |bibcode = 2013Sci...339...52B }}
| |
| * {{cite journal|title= Thermal Time Scales in a Color Glass Condensate|doi= 10.1103/PhysRevC.73.017901|year= 2006|journal= Physical Review C|volume= 73|issue= 17901|arxiv=hep-ph/0505199|bibcode = 2006PhRvC..73a7901P|last1= Parihar|first1= V.|last2= Widom|first2= A.|last3= Srivastava|first3= Y. }}
| |
| * {{cite journal |title= Atomic Gases at Negative Kinetic Temperature |doi= 10.1103/PhysRevLett.95.040403 |year= 2005 |journal= Physical Review Letters |volume= 95 |issue= 4|arxiv=cond-mat/0501344|bibcode = 2005PhRvL..95d0403M |last1= Mosk |first1= A. }}
| |
| * {{cite journal |title= Control of Local Relaxation Behavior in Closed Bipartite Quantum Systems |doi= 10.1103/PhysRevE.72.016117 |year= 2005 |journal= Physical Review E |volume= 72 |issue= 7|arxiv=quant-ph/0502181|bibcode = 2005PhRvE..72a6117S |last1= Schmidt |first1= Harry |last2= Mahler |first2= Günter }}
| |
| * {{cite journal |title= Dark energy and supermassive black holes |doi= 10.1103/PhysRevD.70.063530 |year= 2004 |journal= Physical Review D |volume= 70 |issue= 6|arxiv=astro-ph/0408450|bibcode = 2004PhRvD..70f3530G |last1= González-Díaz |first1= Pedro }}
| |
| * {{cite journal |title= Anti-shielding Effect and Negative Temperature in Instantaneously Reversed Electric Fields and Left-Handed Media |doi= 10.1238/Physica.Regular.068a00087 |year= 2003 |journal= Physica Scripta |volume= 68 |pages= 87–97|arxiv=cond-mat/0302351|bibcode = 2003PhyS...68...87S |last1= Shen |first1= Jian-Qi }}
| |
| * {{cite conference|url=http://www.multimedia.ethz.ch/speakers/zurich_physics_colloquium/?doi=10.3930/ETHZ/AV-8ebe0f93-e6f3-4ce1-b824-1dc587042cc1&autostart=false|format=movie|title=Towards Quantum Magnetism with Ultracold Atoms|last=Ketterle|first=Wolfgang|date=2010-09-22|conference=The Zurich Physics Colloquium|conferenceurl=http://www.multimedia.ethz.ch/speakers/zurich_physics_colloquium|location = ETH Zurich, ITS-MMS; Switzerland|accessdate=01-09-2012|quote=Negative temperature, at about 48min. 53sec.}}
| |
| * {{cite journal|date=2013-01-04 |title=Negative Temperatures? |journal=Science |volume=339 |pages=42–43 |url=http://www.sciencemag.org/content/339/6115/42.full.html|doi=10.1126/science.1232558|last1=Carr|first1=Lincoln D.|issue=6115|pmid=23288530 |bibcode = 2013Sci...339...42C }}
| |
| | |
| ==External links==
| |
| * {{cite web|author=Moriarty, Philip|title=−K: Negative Temperatures|url=http://www.sixtysymbols.com/videos/negative_tempertaures.htm|work=Sixty Symbols|publisher= [[Brady Haran]] for the [[University of Nottingham]]}}
| |
| | |
| {{DEFAULTSORT:Negative Temperature}}
| |
| [[Category:Temperature]]
| |
| [[Category:Magnetism]]
| |
| [[Category:Laser science]]
| |
| [[Category:Plasma physics]]
| |