|
|
Line 1: |
Line 1: |
| [[File:Clausen-function.png|thumbnail|Graph of the Clausen function Cl<sub>2</sub>(θ)]]
| |
|
| |
|
| In [[mathematics]], the '''Clausen function''' - introduced by {{harvs|txt|first=Thomas|last=Clausen|authorlink=Thomas Clausen (mathematician)|year=1832}} - is a transcendental, special function of a single variable. It can variously be expressed in the form of a [[definite integral]], a [[trigonometric series]], and various other special functions. It is intimately connected with the [[Polylogarithm]], [[Inverse tangent integral]], [[Polygamma function]], [[Riemann Zeta function]], [[Eta function]], and [[Dirichlet beta function]].
| |
|
| |
|
| The '''Clausen function of order 2''' - often referred to at ''the'' Clausen function, despite being but one of a class of many - is given by the integral:
| | Gain access to it in excel, copy-paste this continued plan towards corpuscle B1. If you again access an majority of time in abnormal all over corpuscle A1, the bulk in treasures will surface in B1.<br><br>The underside line is, this turns out to be worth exploring if more powerful and healthier strategy games, especially whenever you are keen on Clash to do with Clans. Want to understand what opinions you possess, when you do.<br><br>Crystals are known as currently the games primary forex. The Jewels are that would purchase resources along who has speeding up numerous vitally important tasks. The Treasures can also be used to buy bonus items. Apart from that, this may also let the leader detectable any undesired debris if you would like to obtain a lot more gems. Players has the ability to obtain Gems through undertaking numerous tasks or perhaps it is using the clash of clans crack available online.<br><br>Hold note of how a whole lot of money your teen would be shelling out for video gaming. These kinds connected products aren't cheap as well as , then there is very much the option of investing in one much more add-ons near the game itself. Establish month-to-month and yearly plans available restrictions on the total number of money that can be spent on video. Also, have conversations at the youngsters about having a budget.<br><br>If this is true, you've landed in the [http://wordpress.org/search/correct+spot correct spot]! Truly, we have produced afterward lengthy hrs of research, perform and screening, an alternative for thr Clash linked to Clans Cheat totally unknown and operates perfectly. And due to the trouble of our teams, that never-ending hrs of entertainment in your iPhone, ipad or iPod Touch watching Clash of Clans along with cheat code Clash of Clans produced especially you may want!<br><br>A person's war abject is agnate in your approved village, except that your warfare abject will not carry out resources. Barrio inside your warfare abject simpley can't be anon improved or simply rearranged, as it of it's own mimics this adjustment and in addition accomplished completed advancement stages of your apple program of alertness day. Combat bases additionally never price to take their decorative accents rearmed, defenses reloaded in addition to characters healed, as these kinds of products are consistently ready. The association alcazar in that room your war abject bill be abounding alone to the one in your company whole village.<br><br>Also there is a "start" button to click on located in the wake of getting the wanted traits. When you start reduced Clash of Clans hack into hack cheats tool, hang on around for a 10 % of moment, land refresh and you shall have the means owners needed. There must be nothing at all result in in working with thjis hack and cheats program. Make utilization linked the Means that you have, and exploit the 2013 Clash of Clans hack obtain! So why fork out for difficult or gems when everyone can get the taken granted for now things with this device! Sprint and get your proprietary Clash among Clans hack software today. The required property are only a amount of of clicks absent If you cherished this posting and you would like to receive extra information relating to clash of clans cheat ([http://prometeu.net please click the next web page]) kindly take a look at the web-site. . |
| | |
| :<math>\operatorname{Cl}_2(\varphi)=-\int_0^{\varphi} \log\Bigg|2\sin\frac{x}{2} \Bigg|\, dx:</math>
| |
| | |
| In the range :<math>0 < \varphi < 2\pi\, </math> the [[Sine function]] inside the [[absolute value]] sign remains strictly positive, so the absolute value signs may be omitted. The Clausen function also has the [[Fourier series]] representation:
| |
| | |
| :<math>\operatorname{Cl}_2(\varphi)=\sum_{k=1}^{\infty}\frac{\sin k\varphi}{k^2} = \sin\varphi +\frac{\sin 2\varphi}{2^2}+\frac{\sin 3\varphi}{3^2}+\frac{\sin 4\varphi}{4^2}+ \, \cdots </math>
| |
| | |
| The Clausen functions - as a class of functions - feature extensively in many areas of modern mathematical research, particularly in relation to the evaluation of many classes of [[logarithmic]] and Polylogarithmic integrals, both definite and indefinite. They also have numerous applications with regard to the summation of [[Hypergeometric series]], Central [[Binomial]] sums, sums of the [[Polygamma function]], and [[Dirichlet L-series]]. | |
| | |
| ==Basic properties==
| |
| | |
| The '''Clausen function''' (of order 2) has simple zeros at all (integer) multiples of :<math>\pi, \,</math> since if :<math>k\in \mathbb{Z} \, </math> is an integer, :<math>\sin k\pi=0</math>
| |
| | |
| :<math>\text{Cl}_2(m\pi) =0, \quad m= 0,\, \pm 1,\, \pm 2,\, \pm 3,\, \cdots </math>
| |
| | |
| It has maxima at :<math>\theta = \frac{\pi}{3}+2m\pi \quad[m\in\mathbb{Z}]</math>
| |
| | |
| :<math>\text{Cl}_2\left(\frac{\pi}{3}+2m\pi \right) =1.01494160 \cdots </math>
| |
| | |
| and minima at :<math>\theta = -\frac{\pi}{3}+2m\pi \quad[m\in\mathbb{Z}]</math>
| |
| | |
| :<math>\text{Cl}_2\left(-\frac{\pi}{3}+2m\pi \right) =-1.01494160 \cdots </math>
| |
| | |
| The following properties are immediate consequences of the series definition:
| |
| | |
| :<math>\text{Cl}_2(\theta+2m\pi) = \text{Cl}_2(\theta) </math>
| |
| | |
| :<math>\text{Cl}_2(-\theta) = -\text{Cl}_2(\theta) </math>
| |
| | |
| ('''Ref''': See Lu and Perez, 1992, below for these results - although no proofs are given).
| |
| | |
| ==General definition==
| |
| | |
| More generally, one defines the two generalized Clausen functions:
| |
| | |
| :<math>\operatorname{S}_z(\theta) = \sum_{k=1}^\infty \frac{\sin k\theta}{k^z}</math>
| |
| | |
| :<math>\operatorname{C}_z(\theta) = \sum_{k=1}^\infty \frac{\cos k\theta}{k^z}</math>
| |
| | |
| which are valid for complex ''z'' with Re ''z'' >1. The definition may be extended to all of the complex plane through [[analytic continuation]].
| |
| | |
| When ''z'' is replaced with a non-negative integer, the '''Standard Clausen Functions''' are defined by the following [[Fourier series]]:
| |
| | |
| :<math>\operatorname{Cl}_{2m+2}(\theta) = \sum_{k=1}^\infty \frac{\sin k\theta }{k^{2m+2}}</math>
| |
| | |
| :<math>\operatorname{Cl}_{2m+1}(\theta) = \sum_{k=1}^\infty \frac{\cos k\theta }{k^{2m+1}}</math>
| |
| | |
| :<math>\operatorname{Sl}_{2m+2}(\theta) = \sum_{k=1}^\infty \frac{\cos k\theta }{k^{2m+2}}</math>
| |
| | |
| :<math>\operatorname{Sl}_{2m+1}(\theta) = \sum_{k=1}^\infty \frac{\sin k\theta }{k^{2m+1}}</math>
| |
| | |
| N.B. The '''SL-type Clausen functions''' have the alternative notation :<math>\operatorname{Gl}_m(\theta)\, </math> and are sometimes referred to as the '''Glaisher-Clausen functions''' (after [[James Whitbread Lee Glaisher]], hence the GL-notation).
| |
| | |
| ==Relation to the Bernoulli Polynomials==
| |
| | |
| The '''SL-type Clausen function''' are polynomials in <math>\, \theta\, </math>, and are closely related to the [[Bernoulli polynomials]]. This connection is apparent from the [[Fourier series]] representations of the Bernoulli Polynomials:
| |
| | |
| :<math>B_{2n-1}(x)=\frac{2(-1)^n(2n-1)!}{(2\pi)^{2n-1}} \, \sum_{k=1}^{\infty}\frac{\sin 2\pi kx}{k^{2n-1}}</math>
| |
| | |
| :<math>B_{2n}(x)=\frac{2(-1)^{n-1}(2n)!}{(2\pi)^{2n}} \, \sum_{k=1}^{\infty}\frac{\cos 2\pi kx}{k^{2n}}</math>
| |
| | |
| Setting <math>\, x= \theta/2\pi \, </math> in the above, and then rearranging the terms gives the following closed form (polynomial) expressions:
| |
| | |
| :<math>\text{Sl}_{2m}(\theta) = \frac{(-1)^{m-1}(2\pi)^{2m}}{2(2m)!} B_{2m}\left(\frac{\theta}{2\pi}\right)</math>
| |
| | |
| :<math>\text{Sl}_{2m-1}(\theta) = \frac{(-1)^{m}(2\pi)^{2m-1}}{2(2m-1)!} B_{2m-1}\left(\frac{\theta}{2\pi}\right)</math>
| |
| | |
| Where the [[Bernoulli polynomials]] <math>\, B_n(x)\,</math> are defined in terms of the [[Bernoulli numbers]] <math>\, B_n \equiv B_n(0)\, </math> by the relation:
| |
| | |
| :<math>B_n(x)=\sum_{j=0}^n\binom{n}{j} B_jx^{n-j}</math>
| |
| | |
| Explicit evaluations derived from the above include:
| |
| | |
| :<math> \text{Sl}_1(\theta)= \frac{\pi}{2}-\frac{\theta}{2} </math>
| |
| | |
| :<math> \text{Sl}_2(\theta)= \frac{\pi^2}{6}-\frac{\pi\theta}{2}+\frac{\theta^2}{4} </math>
| |
| | |
| :<math> \text{Sl}_3(\theta)= \frac{\pi^2\theta}{6} -\frac{\pi\theta^2}{4}+\frac{\theta^3}{12} </math>
| |
| | |
| :<math> \text{Sl}_4(\theta)= \frac{\pi^4}{90}-\frac{\pi^2\theta^2}{12}+\frac{\pi\theta^3}{12}-\frac{\theta^4}{48} </math>
| |
| | |
| ==Duplication formula==
| |
| | |
| For :<math> 0 < \theta < \pi </math>, the duplication formula can be proven directly from the Integral definition (see also Lu and Perez, 1992, below for the result - although no proof is given):
| |
| | |
| :<math>\operatorname{Cl}_{2}(2\theta) = 2\operatorname{Cl}_{2}(\theta) - 2\operatorname{Cl}_{2}(\pi-\theta) </math>
| |
| | |
| Immediate consequences of the duplication formula, along with use of the special value :<math>\operatorname{Cl}_2\left(\frac{\pi}{2}\right)=G</math>, include the relations:
| |
| | |
| :<math>\operatorname{Cl}_2\left(\frac{\pi}{4}\right)- \operatorname{Cl}_2\left(\frac{3\pi}{4}\right)=\frac{G}{2}</math>
| |
| | |
| :<math>2\operatorname{Cl}_2\left(\frac{\pi}{3}\right)= 3\operatorname{Cl}_2\left(\frac{2\pi}{3}\right)</math>
| |
| | |
| For higher order Clausen functions, duplication formulae can be obtained from the one given above; simply replace <math> \, \theta \, </math> with the [[dummy variable]] <math>\, x \, </math>, and integrate over the interval <math> \, [0, \theta]. \, </math> Applying the same process repeatedly yields:
| |
| | |
| :<math>\operatorname{Cl}_{3}(2\theta) = 4\operatorname{Cl}_{3}(\theta) + 4\operatorname{Cl}_{3}(\pi-\theta) </math>
| |
| | |
| :<math>\operatorname{Cl}_{4}(2\theta) = 8\operatorname{Cl}_{4}(\theta) - 8\operatorname{Cl}_{4}(\pi-\theta) </math>
| |
| | |
| :<math>\operatorname{Cl}_{5}(2\theta) = 16\operatorname{Cl}_{5}(\theta) + 16 \operatorname{Cl}_{5}(\pi-\theta) </math>
| |
| | |
| :<math>\operatorname{Cl}_{6}(2\theta) = 32\operatorname{Cl}_{6}(\theta) - 32 \operatorname{Cl}_{6}(\pi-\theta) </math>
| |
| | |
| And more generally, upon induction on <math>\, m, \, \, m \ge 1 </math>
| |
| | |
| :<math>\operatorname{Cl}_{m+1}(2\theta) = 2^m\Bigg[\operatorname{Cl}_{m+1}(\theta) + (-1)^m \operatorname{Cl}_{m+1}(\pi-\theta) \Bigg]</math>
| |
| | |
| Use of the generalized duplication formula allows for an extension of the result for the Clausen function of order 2 - involving [[Catalan's constant]]. For <math>\, m \in \mathbb{Z} \ge 1\, </math>
| |
| | |
| :<math>\text{Cl}_{2m}\left(\frac{\pi}{2}\right) = 2^{2m-1}\left[\text{Cl}_{2m}\left(\frac{\pi}{4}\right)- \text{Cl}_{2m}\left(\frac{3\pi}{4}\right) \right] = \beta(2m)</math>
| |
| | |
| Where <math>\, \beta(x) \, </math> is the [[Dirichlet beta function]].
| |
| | |
| ==Proof of the Duplication formula==
| |
| | |
| From the integral definition,
| |
| | |
| :<math>\operatorname{Cl}_2(2\theta)=-\int_0^{2\theta} \log\Bigg| 2 \sin \frac{x}{2} \Bigg| \,dx</math> | |
| | |
| Apply the duplication formula for the [[Sine function]], :<math>\sin 2x = 2\sin\frac{x}{2}\cos\frac{x}{2}</math> to obtain
| |
| | |
| :<math>-\int_0^{2\theta} \log\Bigg| \left(2 \sin \frac{x}{4} \right)\left(2 \cos \frac{x}{4} \right) \Bigg| \,dx=</math>
| |
| | |
| :<math>-\int_0^{2\theta} \log\Bigg| 2 \sin \frac{x}{4} \Bigg| \,dx -\int_0^{2\theta} \log\Bigg| 2 \cos \frac{x}{4} \Bigg| \,dx=</math>
| |
| | |
| Apply the substitution <math>x=2y, dx=2\, dy</math> on both integrals
| |
| | |
| <math>\Rightarrow</math>
| |
| | |
| :<math>-2\int_0^{\theta} \log\Bigg| 2 \sin \frac{x}{2} \Bigg| \,dx -2\int_0^{\theta} \log\Bigg| 2 \cos \frac{x}{2} \Bigg| \,dx=</math>
| |
| | |
| :<math>2\, \operatorname{Cl}_2(\theta) -2\int_0^{\theta} \log\Bigg| 2 \cos \frac{x}{2} \Bigg| \,dx</math>
| |
| | |
| On that last integral, set <math>y=\pi-x, \, x= \pi-y, \, dx = -dy</math>, and use the trigonometric identity <math>\cos(x-y)=\cos x\cos y - \sin x\sin y</math> to show that:
| |
| | |
| <math>\cos\left(\frac{\pi-y}{2}\right) = \sin \frac{y}{2} \Rightarrow </math>
| |
| | |
| <math>\operatorname{Cl}_2(2\theta)=2\, \operatorname{Cl}_2(\theta) -2\int_0^{\theta} \log\Bigg| 2 \cos \frac{x}{2} \Bigg| \,dx=</math>
| |
| | |
| <math>2\, \operatorname{Cl}_2(\theta) +2\int_{\pi}^{\pi-\theta} \log\Bigg| 2 \sin \frac{y}{2} \Bigg| \,dy= </math>
| |
| | |
| <math>\, \operatorname{Cl}_2(\theta) -2\, \operatorname{Cl}_2(\pi-\theta) + 2\, \operatorname{Cl}_2(\pi)</math>
| |
| | |
| <math>\operatorname{Cl}_2(\pi) = 0</math>
| |
| | |
| Therefore
| |
| | |
| <math>\operatorname{Cl}_2(2\theta)=2\, \operatorname{Cl}_2(\theta)-2\, \operatorname{Cl}_2(\pi-\theta)\, . \, \Box </math>
| |
| | |
| ==Derivatives of general order Clausen functions==
| |
| | |
| Direct differentiation of the [[Fourier series]] expansions for the Clausen functions give:
| |
| | |
| :<math>\frac{d}{d\theta}\operatorname{Cl}_{2m+2}(\theta) = \frac{d}{d\theta}\sum_{k=1}^\infty \frac{\sin k\theta }{k^{2m+2}}=\sum_{k=1}^\infty \frac{\cos k\theta }{k^{2m+1}}=\operatorname{Cl}_{2m+1}(\theta)</math>
| |
| | |
| :<math>\frac{d}{d\theta}\operatorname{Cl}_{2m+1}(\theta) = \frac{d}{d\theta}\sum_{k=1}^\infty \frac{\cos k\theta }{k^{2m+1}}=-\sum_{k=1}^\infty \frac{\sin k\theta }{k^{2m}}=-\operatorname{Cl}_{2m}(\theta)</math>
| |
| | |
| :<math>\frac{d}{d\theta}\operatorname{Sl}_{2m+2}(\theta) = \frac{d}{d\theta}\sum_{k=1}^\infty \frac{\cos k\theta }{k^{2m+2}}= -\sum_{k=1}^\infty \frac{\sin k\theta }{k^{2m+1}}=-\operatorname{Sl}_{2m+1} (\theta)</math>
| |
| | |
| :<math>\frac{d}{d\theta}\operatorname{Sl}_{2m+1}(\theta) = \frac{d}{d\theta}\sum_{k=1}^\infty \frac{\sin k\theta }{k^{2m+1}}=\sum_{k=1}^\infty \frac{\cos k\theta }{k^{2m}}=\operatorname{Sl}_{2m} (\theta)</math>
| |
| | |
| By appealing to the [[First Fundamental Theorem Of Calculus]], we also have:
| |
| | |
| :<math>\frac{d}{d\theta}\operatorname{Cl}_2(\theta) = \frac{d}{d\theta} \left[ -\int_0^{\theta} \log \Bigg| 2\sin \frac{x}{2}\Bigg| \,dx \, \right] = - \log \Bigg| 2\sin \frac{\theta}{2}\Bigg| = \operatorname{Cl}_1(\theta) </math>
| |
| | |
| ==Relation to the Inverse Tangent Integral==
| |
| | |
| The [[Inverse tangent integral]] is defined on the interval :<math>0 < z < 1</math> by
| |
| | |
| :<math>\operatorname{Ti}_2(z)=\int_0^z \frac{\tan^{-1}x}{x}\,dx = \sum_{k=0}^{\infty}(-1)^k\frac{z^{2k+1}}{(2k+1)^2}</math>
| |
| | |
| It has the following closed form in terms of the Clausen Function:
| |
| | |
| :<math>\operatorname{Ti}_2(\tan \theta)= \theta\log(\tan \theta) + \frac{1}{2}\operatorname{Cl}_2(2\theta) +\frac{1}{2}\operatorname{Cl}_2(\pi-2\theta)</math>
| |
| | |
| ==Proof of the Inverse Tangent Integral relation==
| |
| | |
| From the integral definition of the [[Inverse tangent integral]], we have
| |
| | |
| :<math>\operatorname{Ti}_2(\tan \theta) = \int_0^{\tan \theta}\frac{\tan^{-1}x}{x}\,dx</math>
| |
| | |
| Performing an integration by parts
| |
| | |
| :<math>\int_0^{\tan \theta}\frac{\tan^{-1}x}{x}\,dx= \tan^{-1}x\log x \, \Bigg|_0^{\tan \theta} - \int_0^{\tan \theta}\frac{\log x}{1+x^2}\,dx=</math>
| |
| | |
| :<math>\theta \log{\tan \theta} - \int_0^{\tan \theta}\frac{\log x}{1+x^2}\,dx</math>
| |
| | |
| Apply the substitution :<math>x=\tan y,\, y=\tan^{-1}x,\, dy=\frac{dx}{1+x^2}\,</math> to obtain
| |
| | |
| :<math>\theta \log{\tan \theta} - \int_0^{\theta}\log(\tan y)\,dy</math>
| |
| | |
| For that last integral, apply the transform :<math>y=x/2,\, dy=dx/2\,</math> to get
| |
| | |
| :<math>\theta \log{\tan \theta} - \frac{1}{2}\int_0^{2\theta}\log\left(\tan \frac{x}{2}\right)\,dx=</math>
| |
| | |
| :<math>\theta \log{\tan \theta} - \frac{1}{2}\int_0^{2\theta}\log\left(\frac{\sin (x/2) }{\cos (x/2)}\right)\,dx=</math>
| |
| | |
| :<math>\theta \log{\tan \theta} - \frac{1}{2}\int_0^{2\theta}\log\left(\frac{2\sin (x/2) }{2\cos (x/2)}\right)\,dx=</math>
| |
| | |
| :<math>\theta \log{\tan \theta} - \frac{1}{2}\int_0^{2\theta}\log\left(2\sin \frac{x}{2}\right)\,dx+ \frac{1}{2}\int_0^{2\theta}\log\left(2\cos \frac{x}{2}\right)\,dx=</math>
| |
| | |
| :<math>\theta \log{\tan \theta} +\frac{1}{2}\operatorname{Cl}_2(2\theta)+ \frac{1}{2}\int_0^{2\theta}\log\left(2\cos \frac{x}{2}\right)\,dx</math>
| |
| | |
| Finally, as with the proof of the Duplication formula, the substitution <math>x=(\pi-y)\, </math> reduces that last integral to
| |
| | |
| :<math>\int_0^{2\theta}\log\left(2\cos \frac{x}{2}\right)\,dx= \operatorname{Cl}_2(\pi-2\theta)- \operatorname{Cl}_2(\pi) = \operatorname{Cl}_2(\pi-2\theta)</math>
| |
| | |
| Thus
| |
| | |
| :<math>\operatorname{Ti}_2(\tan \theta) = \theta \log{\tan \theta} +\frac{1}{2}\operatorname{Cl}_2(2\theta)+ \frac{1}{2} \operatorname{Cl}_2(\pi-2\theta)\, . \, \Box </math>
| |
| | |
| ==Relation to the Barnes' G-function==
| |
| | |
| For real :<math>0 < z < 1</math>, the Clausen function of second order can be expressed in terms of the [[Barnes G-function]] and (Euler) [[Gamma function]]:
| |
| | |
| :<math>\operatorname{Cl}_{2}(2\pi z) = 2\pi \log \left( \frac{G(1-z)}{G(1+z)} \right) -2\pi \log \left( \frac{\sin \pi z}{ \pi } \right) </math>
| |
| | |
| Or equivalently
| |
| | |
| :<math>\operatorname{Cl}_{2}(2\pi z) = 2\pi \log \left( \frac{G(1-z)}{G(z)} \right) -2\pi \log \Gamma(z)-2\pi \log \left( \frac{\sin \pi z}{ \pi } \right) </math>
| |
| | |
| Ref: See '''Adamchik''', "Contributions to the Theory of the Barnes function", below.
| |
| | |
| ==Relation to the Polylogarithm==
| |
| | |
| The Clausen functions represent the real and imaginary parts of the Polylogarithm, on the [[Unit Circle]]:
| |
| | |
| :<math>\operatorname{Cl}_{2m}(\theta) = \Im (\operatorname{Li}_{2m}(e^{i \theta})), \quad m\in\mathbb{Z} \ge 1</math>
| |
| | |
| :<math>\operatorname{Cl}_{2m+1}(\theta) = \Re (\operatorname{Li}_{2m+1}(e^{i \theta})), \quad m\in\mathbb{Z} \ge 0</math>
| |
| | |
| This is easily seen by appealing to the series definition of the [[Polylogarithm]].
| |
| | |
| :<math>\text{Li}_n(z)=\sum_{k=1}^{\infty}\frac{z^k}{k^n} \quad \Rightarrow \text{Li}_n\left(e^{i\theta}\right)=\sum_{k=1}^{\infty}\frac{\left(e^{i\theta}\right)^k}{k^n}= \sum_{k=1}^{\infty}\frac{e^{ik\theta}}{k^n}</math>
| |
| | |
| By Euler's Theorem,
| |
| | |
| :<math>e^{i\theta} = \cos \theta +i\sin \theta</math>
| |
| | |
| and by de Moivre's Theorem ([[DeMoivre's Formula]])
| |
| | |
| :<math>(\cos \theta +i\sin \theta)^k= \cos k\theta +i\sin k\theta \quad \Rightarrow \text{Li}_n\left(e^{i\theta}\right)=\sum_{k=1}^{\infty}\frac{\cos k\theta}{k^n}+ i \, \sum_{k=1}^{\infty}\frac{\sin k\theta}{k^n}</math>
| |
| | |
| Hence
| |
| | |
| :<math>\text{Li}_{2m}\left(e^{i\theta}\right)=\sum_{k=1}^{\infty}\frac{\cos k\theta}{k^{2m}}+ i \, \sum_{k=1}^{\infty}\frac{\sin k\theta}{k^{2m}} = \text{Sl}_{2m}(\theta)+i\text{Cl}_{2m}(\theta)</math>
| |
| | |
| :<math>\text{Li}_{2m+1}\left(e^{i\theta}\right)=\sum_{k=1}^{\infty}\frac{\cos k\theta}{k^{2m+1}}+ i \, \sum_{k=1}^{\infty}\frac{\sin k\theta}{k^{2m+1}} = \text{Cl}_{2m+1}(\theta)+i\text{Sl}_{2m+1}(\theta)</math>
| |
| | |
| ==Relation to the Polygamma function==
| |
| | |
| The Clausen functions are intimately connected to the [[Polygamma function]]. Indeed, it is possible to express Clausen functions as linear combinations of sine functions and Polygamma functions. One such relation is shown here, and proven below:
| |
| | |
| :<math>\text{Cl}_{2m}\left( \frac{q\pi}{p}\right)= \frac{1}{(2p)^{2m}(2m-1)!} \, \sum_{j=1}^{p} \sin\left(\tfrac{qj\pi}{p}\right)\, \left[\psi_{2m-1}\left(\tfrac{j}{2p}\right)+(-1)^q\psi_{2m-1}\left(\tfrac{j+p}{2p}\right)\right] </math>
| |
| | |
| Let <math>\,p\,</math> and <math>\,q\,</math> be positive integers, such that <math>\,q/p\,</math> is a rational number <math>\,0 < q/p < 1\, </math>, then, by the series definition for the higher order Clausen function (of even index):
| |
| | |
| :<math>\text{Cl}_{2m}\left( \frac{q\pi}{p}\right)= \sum_{k=1}^{\infty}\frac{\sin (kq\pi/p)}{k^{2m}} </math>
| |
| | |
| We split this sum into exactly '''p'''-parts, so that the first series contains all, and only, those terms congruous to <math>\,kp+1,\, </math> the second series contains all terms congruous to <math>\,kp+2,\, </math> etc, up to the final '''p'''-th part, that contain all terms congruous to <math>\,kp+p\, </math>
| |
| | |
| :<math>\text{Cl}_{2m}\left( \frac{q\pi}{p}\right)=</math>
| |
| | |
| :<math>\sum_{k=0}^{\infty}\frac{\sin \left[(kp+1)\frac{q\pi}{p}\right]}{(kp+1)^{2m}} + \sum_{k=0}^{\infty}\frac{\sin \left[(kp+2)\frac{q\pi}{p}\right]}{(kp+2)^{2m}} +
| |
| \sum_{k=0}^{\infty}\frac{\sin \left[(kp+3)\frac{q\pi}{p}\right]}{(kp+3)^{2m}} + \, \cdots \, </math>
| |
| | |
| :<math>+ \sum_{k=0}^{\infty}\frac{\sin \left[(kp+p-2)\frac{q\pi}{p}\right]}{(kp+p-2)^{2m}} + \sum_{k=0}^{\infty}\frac{\sin \left[(kp+p-1)\frac{q\pi}{p}\right]}{(kp+p-1)^{2m}} +
| |
| \sum_{k=0}^{\infty}\frac{\sin \left[(kp+p)\frac{q\pi}{p}\right]}{(kp+p)^{2m}}</math>
| |
| | |
| We can index these sums to form a double sum:
| |
| | |
| :<math>\text{Cl}_{2m}\left( \frac{q\pi}{p}\right)= \sum_{j=1}^{p} \Bigg\{ \sum_{k=0}^{\infty}\frac{\sin \left[(kp+j)\frac{q\pi}{p}\right]}{(kp+j)^{2m}} \Bigg\} =</math>
| |
| | |
| :<math>\sum_{j=1}^{p} \frac{1}{p^{2m}}\Bigg\{ \sum_{k=0}^{\infty}\frac{\sin \left[(kp+j)\frac{q\pi}{p}\right]}{(k+(j/p))^{2m}} \Bigg\} </math>
| |
| | |
| Applying the addition formula for the [[Sine function]], <math>\,\sin(x+y)=\sin x\cos y+\cos x\sin y,\, </math> the sine term in the numerator becomes:
| |
| | |
| :<math>\sin \left[(kp+j)\frac{q\pi}{p}\right]=\sin\left(kq\pi+\frac{qj\pi}{p}\right)=\sin kq\pi \cos \frac{qj\pi}{p}+\cos kq\pi \sin\frac{qj\pi}{p}</math>
| |
| | |
| :<math>\sin m\pi \equiv 0, \quad \, \cos m\pi \equiv (-1)^m \quad \Leftrightarrow m=0,\, \pm 1,\, \pm 2,\, \pm 3,\, \cdots </math>
| |
| | |
| :<math>\sin \left[(kp+j)\frac{q\pi}{p}\right]=(-1)^{kq}\sin\frac{qj\pi}{p}</math>
| |
| | |
| Consequently,
| |
| | |
| :<math>\text{Cl}_{2m}\left( \frac{q\pi}{p}\right)= \sum_{j=1}^{p} \frac{1}{p^{2m}} \sin\left(\frac{qj\pi}{p}\right)\, \Bigg\{ \sum_{k=0}^{\infty}\frac{(-1)^{kq}}{(k+(j/p))^{2m}} \Bigg\} </math>
| |
| | |
| To convert the '''inner sum''' in the double sum into a non-alternating sum, split in two in parts in exactly the same way as the earlier sum was split into '''p'''-parts:
| |
| | |
| :<math>\sum_{k=0}^{\infty}\frac{(-1)^{kq}}{(k+(j/p))^{2m}}=\sum_{k=0}^{\infty}\frac{(-1)^{(2k)q}}{((2k)+(j/p))^{2m}}+ \sum_{k=0}^{\infty}\frac{(-1)^{(2k+1)q}}{((2k+1)+(j/p))^{2m}}=</math>
| |
| | |
| :<math>\sum_{k=0}^{\infty}\frac{1}{(2k+(j/p))^{2m}}+ (-1)^q\, \sum_{k=0}^{\infty}\frac{1}{(2k+1+(j/p))^{2m}}=</math>
| |
| | |
| :<math>\frac{1}{2^p}\left[ \sum_{k=0}^{\infty}\frac{1}{(k+(j/2p))^{2m}}+ (-1)^q\, \sum_{k=0}^{\infty}\frac{1}{(k+\left(\frac{j+p}{2p}\right))^{2m}} \right]</math>
| |
| | |
| For <math>\,m \in\mathbb{Z} \ge 1\, </math>, the [[Polygamma function]] has the series representation
| |
| | |
| :<math>\psi_{m}(z)=(-1)^{m+1}m! \, \sum_{k=0}^{\infty}\frac{1}{(k+z)^{m+1}} </math>
| |
| | |
| So, in terms of the Polygamma function, the previous '''inner sum''' becomes:
| |
| | |
| :<math>\frac{1}{2^{2m}(2m-1)!} \left[\psi_{2m-1}\left(\tfrac{j}{2p}\right)+(-1)^q\psi_{2m-1}\left(\tfrac{j+p}{2p}\right)\right] </math>
| |
| | |
| Plugging this back into the '''double sum''' gives the desired result:
| |
| | |
| :<math>\text{Cl}_{2m}\left( \frac{q\pi}{p}\right)= \frac{1}{(2p)^{2m}(2m-1)!} \, \sum_{j=1}^{p} \sin\left(\tfrac{qj\pi}{p}\right)\, \left[\psi_{2m-1}\left(\tfrac{j}{2p}\right)+(-1)^q\psi_{2m-1}\left(\tfrac{j+p}{2p}\right)\right] </math>
| |
| | |
| ==Relation to the Generalized Logsine Integral==
| |
| | |
| The '''Generalized Logsine''' Integral is defined by:
| |
| | |
| :<math>\mathcal{L}s_n^{m}(\theta) = -\int_0^{\theta} x^m \log^{n-m-1} \Bigg| 2\sin\frac{x}{2} \Bigg| \, dx</math>
| |
| | |
| In this generalized notation, the Clausen function can be expressed in the form:
| |
| | |
| :<math>\text{Cl}_2(\theta) = \mathcal{L}s_2^{0}(\theta) </math>
| |
| | |
| ==Kummer's relation==
| |
| | |
| [[Ernst Kummer]] and Rogers give the relation
| |
| | |
| :<math>\operatorname{Li}_2(e^{i \theta}) = \zeta(2) - \theta(2\pi-\theta)/4 + i\operatorname{Cl}_2(\theta)</math>
| |
| | |
| valid for <math>0\leq \theta \leq 2\pi</math>.
| |
| | |
| ==Relation to the Lobachevsky function==
| |
| | |
| The '''Lobachevsky function''' Λ or Л is essentially the same function with a change of variable:
| |
| | |
| :<math>\Lambda(\theta) = - \int_0^\theta \log|2 \sin(t)| \,dt = \operatorname{Cl}_2(2\theta)/2</math>
| |
| | |
| though the name "Lobachevsky function" is not quite historically accurate, as Lobachevsky's formulas for hyperbolic volume used the slightly different function
| |
| | |
| :<math>\int_0^\theta \log| \sec(t)| \,dt = \Lambda(\theta+\pi/2)+\theta\log 2.</math>
| |
| | |
| ==Relation to Dirichlet L-functions==
| |
| For rational values of <math>\theta/\pi</math> (that is, for <math>\theta/\pi=p/q</math> for some integers ''p'' and ''q''), the function <math>\sin(n\theta)</math> can be understood to represent a periodic orbit of an element in the [[cyclic group]], and thus <math>\operatorname{Cl}_s(\theta)</math> can be expressed as a simple sum involving the [[Hurwitz zeta function]].{{citation needed|date=July 2013}} This allows relations between certain [[Dirichlet L-function]]s to be easily computed.
| |
| | |
| ==Series acceleration==
| |
| A [[series acceleration]] for the Clausen function is given by
| |
| | |
| :<math>\frac{\operatorname{Cl}_2(\theta)}{\theta} =
| |
| 1-\log|\theta| +
| |
| \sum_{n=1}^\infty \frac{\zeta(2n)}{n(2n+1)} \left(\frac{\theta}{2\pi}\right)^{2n}
| |
| </math>
| |
| | |
| which holds for <math>|\theta|<2\pi</math>. Here, <math>\zeta(s)</math> is the [[Riemann zeta function]]. A more rapidly convergent form is given by
| |
| | |
| :<math>\frac{\operatorname{Cl}_2(\theta)}{\theta} =
| |
| 3-\log\left[|\theta| \left(1-\frac{\theta^2}{4\pi^2}\right)\right]
| |
| -\frac{2\pi}{\theta} \log \left( \frac{2\pi+\theta}{2\pi-\theta}\right)
| |
| +\sum_{n=1}^\infty \frac{\zeta(2n)-1}{n(2n+1)} \left(\frac{\theta}{2\pi}\right)^n.
| |
| </math>
| |
| | |
| Convergence is aided by the fact that <math>\zeta(n)-1</math> approaches zero rapidly for large values of ''n''. Both forms are obtainable through the types of resummation techniques used to obtain [[rational zeta series]]. (ref. Borwein, ''etal.'' 2000, below).
| |
| | |
| ==Special values==
| |
| | |
| Some special values include
| |
| | |
| :<math>\operatorname{Cl}_2\left(\frac{\pi}{2}\right)=G</math>
| |
| | |
| :<math>\operatorname{Cl}_2\left(\frac{\pi}{3}\right)=3\pi \log\left(
| |
| \frac{G\left(\frac{2}{3}\right)}{ G\left(\frac{1}{3}\right)} \right)-3\pi \log
| |
| \Gamma\left(\frac{1}{3}\right)+\pi \log \left(\frac{ 2\pi }{\sqrt{3}}\right)</math>
| |
| | |
| :<math>\operatorname{Cl}_2\left(\frac{2\pi}{3}\right)=2\pi \log\left(
| |
| \frac{G\left(\frac{2}{3}\right)}{ G\left(\frac{1}{3}\right)} \right)-2\pi \log
| |
| \Gamma\left(\frac{1}{3}\right)+\frac{2\pi}{3} \log \left(\frac{ 2\pi
| |
| }{\sqrt{3}}\right)</math>
| |
| | |
| :<math>\operatorname{Cl}_2\left(\frac{\pi}{4}\right)=
| |
| 2\pi\log \left( \frac{G\left(\frac{7}{8}\right)}{G\left(\frac{1}{8}\right)} \right) -2\pi
| |
| \log \Gamma\left(\frac{1}{8}\right)+\frac{\pi}{4}\log \left( \frac{2\pi}{\sqrt{2-\sqrt{2}}}
| |
| \right)</math>
| |
| | |
| :<math>\operatorname{Cl}_2\left(\frac{3\pi}{4}\right)=
| |
| 2\pi\log \left( \frac{G\left(\frac{5}{8}\right)}{G\left(\frac{3}{8}\right)} \right) -2\pi
| |
| \log \Gamma\left(\frac{3}{8}\right)+\frac{3\pi}{4}\log \left( \frac{2\pi}{\sqrt{2+\sqrt{2}}}
| |
| \right)</math>
| |
| | |
| :<math>\operatorname{Cl}_2\left(\frac{\pi}{6}\right)=
| |
| 2\pi\log \left( \frac{G\left(\frac{11}{12}\right)}{G\left(\frac{1}{12}\right)} \right) -2\pi
| |
| \log \Gamma\left(\frac{1}{12}\right)+\frac{\pi}{6}\log \left( \frac{2\pi \sqrt{2}
| |
| }{\sqrt{3}-1} \right)</math>
| |
| | |
| :<math>\operatorname{Cl}_2\left(\frac{5\pi}{6}\right)=
| |
| 2\pi\log \left( \frac{G\left(\frac{7}{12}\right)}{G\left(\frac{5}{12}\right)} \right) -2\pi
| |
| \log \Gamma\left(\frac{5}{12}\right)+\frac{5\pi}{6}\log \left( \frac{2\pi \sqrt{2}
| |
| }{\sqrt{3}+1} \right)</math>
| |
| | |
| ==Generalized special values==
| |
| | |
| Some special values for higher order Clausen functions include
| |
| | |
| :<math>\operatorname{Cl}_{2m}\left(0\right)=\operatorname{Cl}_{2m}\left(\pi\right)=\operatorname{Cl}_{2m}\left(2\pi\right)=0</math>
| |
| | |
| :<math>\operatorname{Cl}_{2m}\left(\frac{\pi}{2}\right)=\beta(2m)</math>
| |
| | |
| :<math>\operatorname{Cl}_{2m+1}\left(0\right)=\operatorname{Cl}_{2m+1}\left(2\pi\right)=\zeta(2m+1)</math>
| |
| | |
| :<math>\operatorname{Cl}_{2m+1}\left(\pi\right)=-\eta(2m+1)=-\left(\frac{2^{2m}-1}{2^{2m}}\right)\zeta(2m+1)</math>
| |
| | |
| :<math>\operatorname{Cl}_{2m+1}\left(\frac{\pi}{2}\right)=-\frac{1}{2^{2m+1}}\eta(2m+1)=-\left(\frac{2^{2m}-1}{2^{4m+1}}\right)\zeta(2m+1)</math>
| |
| | |
| where :<math>G = \beta(2)</math> is [[Catalan's constant]], :<math>\beta(x)</math> is the [[Dirichlet beta function]], :<math>\eta(x)</math> is the [[Eta function]] (also called the alternating Zeta function), and :<math>\zeta(x)</math> is the [[Riemann Zeta function]].
| |
| | |
| :<math>\beta(x)=\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^x}</math>
| |
| | |
| ==Integrals of the direct function==
| |
| | |
| The following integrals are easily proven from the series representations of the Clausen function: | |
| | |
| :<math>\int_0^{\theta} \operatorname{Cl}_{2m}(x)\,dx=\zeta(2m+1)-\operatorname{Cl}_{2m+1}(\theta)</math>
| |
| | |
| :<math>\int_0^{\theta} \operatorname{Cl}_{2m+1}(x)\,dx=\operatorname{Cl}_{2m+2}(\theta)</math>
| |
| | |
| :<math>\int_0^{\theta} \operatorname{Sl}_{2m}(x)\,dx=\operatorname{Sl}_{2m+1}(\theta)</math>
| |
| | |
| :<math>\int_0^{\theta} \operatorname{Sl}_{2m+1}(x)\,dx=\zeta(2m+2)-\operatorname{Cl}_{2m+2}(\theta)</math>
| |
| | |
| ==Integral evaluations involving the direct function==
| |
| | |
| A large number of trigonometric and logarithmo-trigonometric integrals can be evaluated in terms of the Clausen function, and various common mathematical constants like <math>\, G \,</math> ([[Catalan's constant]]), <math>\, \log 2 \,</math>, and the special cases of the [[Zeta function]], <math>\, \zeta(2) \,</math> and <math>\, \zeta(3) \,</math>.
| |
| | |
| The examples listed below follow directly from the integral representation of the Clausen function, and the proofs require little more than basic trigonometry, integration by parts, and occasional term-by-term integration of the [[Fourier series]] definitions of the Clausen functions.
| |
| | |
| :<math>\int_0^{\theta}\log(\sin x)\,dx=-\tfrac{1}{2}\text{Cl}_2(2\theta)-\theta\log 2</math>
| |
| | |
| :<math>\int_0^{\theta}\log(\cos x)\,dx=\tfrac{1}{2}\text{Cl}_2(\pi-2\theta)-\theta\log 2</math>
| |
| | |
| :<math>\int_0^{\theta}\log(\tan x)\,dx=-\tfrac{1}{2}\text{Cl}_2(2\theta)-\tfrac{1}{2}\text{Cl}_2(\pi-2\theta)</math>
| |
| | |
| :<math>\int_0^{\theta}\log(1+\cos x)\,dx=2\text{Cl}_2(\pi-\theta)-\theta\log 2</math>
| |
| | |
| :<math>\int_0^{\theta}\log(1-\cos x)\,dx=-2\text{Cl}_2(\theta)-\theta\log 2</math>
| |
| | |
| :<math>\int_0^{\theta}\log(1+\sin x)\,dx=2G-2\text{Cl}_2\left(\frac{\pi}{2}+\theta\right)-\theta\log 2</math>
| |
| | |
| :<math>\int_0^{\theta}\log(1-\sin x)\,dx=-2G+2\text{Cl}_2\left(\frac{\pi}{2}-\theta\right)-\theta\log 2</math>
| |
| | |
| ==References==
| |
| | |
| * {{AS ref|27.8|1005}}
| |
| * {{cite arXiv| first1=Viktor. S. | last1=Adamchik | eprint=math/0308086v1 | title=Contributions to the Theory of the Barnes Function}}
| |
| *{{Cite journal | last1=Clausen | first1=Thomas | title=Über die Function sin φ + (1/2<sup>2</sup>) sin 2φ + (1/3<sup>2</sup>) sin 3φ + etc. | url=http://resolver.sub.uni-goettingen.de/purl?PPN243919689_0008 | year=1832 | journal=[[Journal für die reine und angewandte Mathematik]] | issn=0075-4102 | volume=8 | pages=298–300 | ref=harv }}
| |
| * {{cite journal | first1=Van E. | last1=Wood | title=Efficient calculation of Clausen's integral
| |
| |journal=Math. Comp. | year=1968 | volume=22 | number=104 | pages=883–884 | mr=0239733
| |
| |doi = 10.1090/S0025-5718-1968-0239733-9}}
| |
| * Leonard Lewin, (Ed.). ''Structural Properties of Polylogarithms'' (1991) American Mathematical Society, Providence, RI. ISBN 0-8218-4532-2
| |
| * {{cite journal| first1=Kurt Siegfried | last1=Kölbig | title=Chebyshev coefficients for the Clausen function Cl<sub>2</sub>(x)
| |
| |journal=J. Comput. Appl. Math. |year=1995 |volume=64 | number=3 |pages=295–297
| |
| |mr=1365432 |doi=10.1016/0377-0427(95)00150-6}}
| |
| * {{cite web|first1=Jonathan M. |last1=Borwein | first2=Armin |last2= Straub | url=http://www.thecarma.net/jon/nielsenrelations.pdf | title=Relations for Nielsen Polylogarithms}}
| |
| * {{cite journal|first1=Jonathan M. |last1=Borwein | first2=David M. |last2= Bradley |first3=Richard E. |last3=Crandall
| |
| |title=Computational Strategies for the Riemann Zeta Function
| |
| |journal=J. Comp. App. Math.
| |
| |year=2000
| |
| |volume=121 | mr=1780051
| |
| |pages=247–296|ref=harv
| |
| |url=http://www.maths.ex.ac.uk/~mwatkins/zeta/borwein1.pdf}}
| |
| * {{cite journal|first1=Mikahil Yu. | last1=Kalmykov | first2=A. | last2=Sheplyakov
| |
| |title=LSJK - a C++ library for arbitrary-precision numeric evaluation of the generalized log-sine integral
| |
| |journal=Comput. Phys. Comm. |year=2005 | volume=172 | pages=45–59
| |
| |doi=10.1016/j.cpc.2005.04.013 }} {{arxiv| archive=hep-ph | id=0411100}}
| |
| * {{cite arXiv| first1=R. J. | last1=Mathar | eprint=1309.7504 | title=A C99 implementation of the Clausen sums}}
| |
| * {{cite web| first1=Hung Jung | last1=Lu | first2=Christopher A. | last2=Perez |url=http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-5809.pdf | title=Massless one-loop scalar three-point integral and associated Clausen, Glaisher, and L-functions | year=1992}}
| |
| | |
| [[Category:Zeta and L-functions]]
| |