|
|
Line 1: |
Line 1: |
| [[Image:Unit circle angles color.svg|250px|thumb|The primary solution angles{{clarifyme | reason = What are 'primary solution angles'?|date=August 2012}} on the [[unit circle]] are at multiples of 30 and 45 degrees.]]
| | If you compare registry products there are a amount of aspects to look out for. Because of the sheer number of for registry products available on the Internet at when it might be very simple to be scammed. Something frequently overlooked is the fact that certain of these products will the fact is end up damaging your PC. And the registry they say they have cleaned can just cause more issues with a computer than the ones you began with.<br><br>You need to understand some convenient and inexpensive ways that can resolve the problem of your computer plus speed it up. The earlier you fix it, the less damage a computer gets. I might tell regarding several practical techniques that can help we to speed up you computer.<br><br>With the Internet, the risk to a registry is much more plus windows XP error messages might appear frequently. Why? The malicious wares like viruses, Trojans, spy-wares, ad wares, and the like gets recorded too. Cookies are best examples. We reach save passwords, plus stuff, right? That is a simple illustration of the register working.<br><br>The way to fix this problem is to initially reinstall the program(s) causing the errors. There are a lot of different programs that use this file, however 1 might have placed their own faulty variation of the file onto a program. By reinstalling any programs that are causing the error, you'll not just allow your PC to run the program correctly, yet a fresh file can be placed onto a program - leaving the computer running because smoothly because possible again. If you try this, and find it refuses to function, then we should look to update the system & any software we have on the PC. This will probably update the Msvcr71.dll file, allowing the computer to read it correctly again.<br><br>So to fix this, you merely should be able to make all registry files non-corrupted again. This may dramatically speed up the loading time of the computer plus will allow we to a large amount of points on it again. And fixing these files couldn't be simpler - we merely have to employ a tool called a [http://bestregistrycleanerfix.com/tune-up-utilities tuneup utilities 2014].<br><br>Although I always use the many recent version of browser, occasionally different extensions and plugins become the cause of errors with my browser and the program. The same is the story with my browser which was crashing frequently possibly due to the Flash player error.<br><br>Perfect Optimizer is a wise Registry Product, changes consistently plus has lots of qualities. Despite its price, you'll find which the update are truly worthwhile. They offer plenty of support through telephone, send plus forums. You would wish To check out the free trial to check it out for yourself.<br><br>Often the greatest means is to read reports on them and when various consumers remark about its efficiency, it is very probably to be function. The right part is the fact that there are many top registry products which work; we only have to take your pick. |
| {{Trigonometry}}
| |
| Exact [[algebraic expression]]s for [[trigonometric]] values are sometimes useful, mainly for simplifying solutions into [[Nth root|radical]] forms which allow further simplification.
| |
| | |
| All values of the sines, cosines, and tangents of angles at 3° increments are derivable in radicals using identities—the [[Trigonometric identity#Half-angle formulas|half-angle]] identity, the [[Trigonometric identity#Double-angle formulas|double-angle]] identity, and the [[Trigonometric identity#Angle sum and difference identities|angle addition/subtraction]] identity—and using values for 0°, 30°, 36°, and 45°. Note that 1° = π/180 [[radian]]s.
| |
| | |
| According to [[Niven's theorem]], the only rational values of the sine function for which the argument is a [[rational number]] of degrees are 0, 1/2, and 1.
| |
| | |
| == Fermat number ==
| |
| | |
| The list in this article is incomplete in at least two senses. First, it is always possible to apply the half-angle formula to find an exact expression for the cosine of one-half of any angle on the list, then half of that angle, etc. Second, this article exploits only the first two of five known [[Fermat number|Fermat primes]]: 3 and 5,{{clarifyme|date=August 2012}} whereas algebraic expressions also exist for the cosines of 2π/17, 2π/257, and 2π/65537.{{clarifyme | reason = Why are cosines singled out? Isn't this true for all the trig functions? Also, expressions would exist for any multiples of these angles too?|date=August 2012}} In practice, all values of sines, cosines, and tangents not found in this article are approximated using the techniques described at ''[[Generating trigonometric tables]]''.
| |
| | |
| == Table of constants ==
| |
| Values outside the [0°, 45°] angle range are trivially derived from these values, using circle axis [[Coordinate rotations and reflections|reflection]] [[symmetry]]. (See [[Trigonometric identity#Periodicity, symmetry, and shifts|Trigonometric identity]].)
| |
| | |
| In the entries below, when a certain number of degrees is related to a regular polygon, the relation is that the number of degrees in each angle of the polygon is (''n''–2) times the indicated number of degrees (where ''n'' is the number of sides). This is because the sum of the angles of any ''n''-gon is 180°×(''n''–2) and so the measure of each angle of any regular ''n''-gon is 180°×(''n''–2)÷''n''. Thus for example the entry "45°: square" means that, with ''n''=4, 180°÷''n'' = 45°, and the number of degrees in each angle of a square is (''n''–2)×45° = 90°.
| |
| | |
| === 0°: fundamental ===
| |
| : <math>\sin 0=0\,</math>
| |
| : <math>\cos 0=1\,</math>
| |
| : <math>\tan 0=0\,</math>
| |
| : <math>\cot 0\text{ is undefined}\,</math>
| |
| | |
| === 3°: regular 60-sided polygon ===
| |
| : <math>\sin\frac{\pi}{60}=\sin 3^\circ=\tfrac{1}{16} \left[2(1-\sqrt3)\sqrt{5+\sqrt5}+\sqrt2(\sqrt5-1)(\sqrt3+1)\right]\,</math>
| |
| : <math>\cos\frac{\pi}{60}=\cos 3^\circ=\tfrac{1}{16} \left[2(1+\sqrt3)\sqrt{5+\sqrt5}+\sqrt2(\sqrt5-1)(\sqrt3-1)\right]\,</math>
| |
| : <math>\tan\frac{\pi}{60}=\tan 3^\circ=\tfrac{1}{4} \left[(2-\sqrt3)(3+\sqrt5)-2\right]\left[2-\sqrt{2(5-\sqrt5)}\right]\,</math>
| |
| : <math>\cot\frac{\pi}{60}=\cot 3^\circ=\tfrac{1}{4} \left[(2+\sqrt3)(3+\sqrt5)-2\right]\left[2+\sqrt{2(5-\sqrt5)}\right]\,</math>
| |
| | |
| === 6°: regular 30-sided polygon ===
| |
| : <math>\sin\frac{\pi}{30}=\sin 6^\circ=\tfrac{1}{8} \left[\sqrt{6(5-\sqrt5)}-\sqrt5-1\right]\,</math>
| |
| : <math>\cos\frac{\pi}{30}=\cos 6^\circ=\tfrac{1}{8} \left[\sqrt{2(5-\sqrt5)}+\sqrt3(\sqrt5+1)\right]\,</math>
| |
| : <math>\tan\frac{\pi}{30}=\tan 6^\circ=\tfrac{1}{2} \left[\sqrt{2(5-\sqrt5)}-\sqrt3(\sqrt5-1)\right]\,</math>
| |
| : <math>\cot\frac{\pi}{30}=\cot 6^\circ=\tfrac{1}{2} \left[\sqrt3(3+\sqrt5)+\sqrt{2(25+11\sqrt5)}\right]\,</math>
| |
| | |
| === 9°: regular 20-sided polygon ===
| |
| : <math>\sin\frac{\pi}{20}=\sin 9^\circ=\tfrac{1}{8} \left[\sqrt2(\sqrt5+1)-2\sqrt{5-\sqrt5}\right]\,</math>
| |
| : <math>\cos\frac{\pi}{20}=\cos 9^\circ=\tfrac{1}{8} \left[\sqrt2(\sqrt5+1)+2\sqrt{5-\sqrt5}\right]\,</math>
| |
| : <math>\tan\frac{\pi}{20}=\tan 9^\circ=\sqrt5+1-\sqrt{5+2\sqrt5}\,</math>
| |
| : <math>\cot\frac{\pi}{20}=\cot 9^\circ=\sqrt5+1+\sqrt{5+2\sqrt5}\,</math>
| |
| | |
| === 12°: regular 15-sided polygon ===
| |
| : <math>\sin\frac{\pi}{15}=\sin 12^\circ=\tfrac{1}{8} \left[\sqrt{2(5+\sqrt5)}-\sqrt3(\sqrt5-1)\right]\,</math>
| |
| : <math>\cos\frac{\pi}{15}=\cos 12^\circ=\tfrac{1}{8} \left[\sqrt{6(5+\sqrt5)}+\sqrt5-1\right]\,</math>
| |
| : <math>\tan\frac{\pi}{15}=\tan 12^\circ=\tfrac{1}{2} \left[\sqrt3(3-\sqrt5)-\sqrt{2(25-11\sqrt5)}\right]\,</math>
| |
| : <math>\cot\frac{\pi}{15}=\cot 12^\circ=\tfrac{1}{2} \left[\sqrt3(\sqrt5+1)+\sqrt{2(5+\sqrt5)}\right]\,</math>
| |
| | |
| === 15°: regular dodecagon (12-sided polygon) ===
| |
| : <math>\sin\frac{\pi}{12}=\sin 15^\circ=\tfrac{1}{4}\sqrt2(\sqrt3-1)\,</math>
| |
| : <math>\cos\frac{\pi}{12}=\cos 15^\circ=\tfrac{1}{4}\sqrt2(\sqrt3+1)\,</math>
| |
| : <math>\tan\frac{\pi}{12}=\tan 15^\circ=2-\sqrt3\,</math>
| |
| : <math>\cot\frac{\pi}{12}=\cot 15^\circ=2+\sqrt3\,</math>
| |
| | |
| === 18°: regular decagon (10-sided polygon) ===
| |
| : <math>\sin\frac{\pi}{10}=\sin 18^\circ=\tfrac{1}{4}\left(\sqrt5-1\right)\,</math>
| |
| : <math>\cos\frac{\pi}{10}=\cos 18^\circ=\tfrac{1}{4}\sqrt{2(5+\sqrt5)}\,</math>
| |
| : <math>\tan\frac{\pi}{10}=\tan 18^\circ=\tfrac{1}{5}\sqrt{5(5-2\sqrt5)}\,</math>
| |
| : <math>\cot\frac{\pi}{10}=\cot 18^\circ=\sqrt{5+2\sqrt 5}\,</math>
| |
| | |
| === 21°: sum 9° + 12° ===
| |
| : <math>\sin\frac{7\pi}{60}=\sin 21^\circ=\tfrac{1}{16}\left[2(\sqrt3+1)\sqrt{5-\sqrt5}-\sqrt2(\sqrt3-1)(1+\sqrt5)\right]\,</math>
| |
| : <math>\cos\frac{7\pi}{60}=\cos 21^\circ=\tfrac{1}{16}\left[2(\sqrt3-1)\sqrt{5-\sqrt5}+\sqrt2(\sqrt3+1)(1+\sqrt5)\right]\,</math>
| |
| : <math>\tan\frac{7\pi}{60}=\tan 21^\circ=\tfrac{1}{4}\left[2-(2+\sqrt3)(3-\sqrt5)\right]\left[2-\sqrt{2(5+\sqrt5)}\right]\,</math>
| |
| : <math>\cot\frac{7\pi}{60}=\cot 21^\circ=\tfrac{1}{4}\left[2-(2-\sqrt3)(3-\sqrt5)\right]\left[2+\sqrt{2(5+\sqrt5)}\right]\,</math>
| |
| | |
| === 22.5°: regular octagon ===
| |
| : <math>\sin\frac{\pi}{8}=\sin 22.5^\circ=\tfrac{1}{2}\sqrt{2-\sqrt{2}},</math>
| |
| : <math>\cos\frac{\pi}{8}=\cos 22.5^\circ=\tfrac{1}{2}\sqrt{2+\sqrt{2}}\,</math>
| |
| : <math>\tan\frac{\pi}{8}=\tan 22.5^\circ=\sqrt{2}-1\,</math>
| |
| : <math>\cot\frac{\pi}{8}=\cot 22.5^\circ=\sqrt{2}+1\,</math> (Silver ratio)/(Bronze ratio)
| |
| | |
| === 24°: sum 12° + 12° ===
| |
| : <math>\sin\frac{2\pi}{15}=\sin 24^\circ=\tfrac{1}{8}\left[\sqrt3(\sqrt5+1)-\sqrt2\sqrt{5-\sqrt5}\right]\,</math>
| |
| : <math>\cos\frac{2\pi}{15}=\cos 24^\circ=\tfrac{1}{8}\left(\sqrt6\sqrt{5-\sqrt5}+\sqrt5+1\right)\,</math>
| |
| : <math>\tan\frac{2\pi}{15}=\tan 24^\circ=\tfrac{1}{2}\left[\sqrt{2(25+11\sqrt5)}-\sqrt3(3+\sqrt5)\right]\,</math>
| |
| : <math>\cot\frac{2\pi}{15}=\cot 24^\circ=\tfrac{1}{2}\left[\sqrt2\sqrt{5-\sqrt5}+\sqrt3(\sqrt5-1)\right]\,</math>
| |
| | |
| === 27°: sum 12° + 15° ===
| |
| : <math>\sin\frac{3\pi}{20}=\sin 27^\circ=\tfrac{1}{8}\left[2\sqrt{5+\sqrt5}-\sqrt2\;(\sqrt5-1)\right]\,</math>
| |
| : <math>\cos\frac{3\pi}{20}=\cos 27^\circ=\tfrac{1}{8}\left[2\sqrt{5+\sqrt5}+\sqrt2\;(\sqrt5-1)\right]\,</math>
| |
| : <math>\tan\frac{3\pi}{20}=\tan 27^\circ=\sqrt5-1-\sqrt{5-2\sqrt5}\,</math>
| |
| : <math>\cot\frac{3\pi}{20}=\cot 27^\circ=\sqrt5-1+\sqrt{5-2\sqrt5}\,</math>
| |
| | |
| === 30°: regular hexagon ===
| |
| : <math>\sin\frac{\pi}{6}=\sin 30^\circ=\tfrac{1}{2}\,</math>
| |
| : <math>\cos\frac{\pi}{6}=\cos 30^\circ=\tfrac{1}{2}\sqrt3\,</math>
| |
| : <math>\tan\frac{\pi}{6}=\tan 30^\circ=\tfrac{\sqrt3}{3}\,</math>
| |
| : <math>\cot\frac{\pi}{6}=\cot 30^\circ=\sqrt3\,</math>
| |
| | |
| === 33°: sum 15° + 18° ===
| |
| : <math>\sin\frac{11\pi}{60}=\sin 33^\circ=\tfrac{1}{16}\left[2(\sqrt3-1)\sqrt{5+\sqrt5}+\sqrt2(1+\sqrt3)(\sqrt5-1)\right]\,</math>
| |
| : <math>\cos\frac{11\pi}{60}=\cos 33^\circ=\tfrac{1}{16}\left[2(\sqrt3+1)\sqrt{5+\sqrt5}+\sqrt2(1-\sqrt3)(\sqrt5-1)\right]\,</math>
| |
| : <math>\tan\frac{11\pi}{60}=\tan 33^\circ=\tfrac{1}{4}\left[2-(2-\sqrt3)(3+\sqrt5)\right]\left[2+\sqrt{2(5-\sqrt5)}\right]\,</math>
| |
| : <math>\cot\frac{11\pi}{60}=\cot 33^\circ=\tfrac{1}{4}\left[2-(2+\sqrt3)(3+\sqrt5)\right]\left[2-\sqrt{2(5-\sqrt5)}\right]\,</math>
| |
| | |
| === 36°: regular pentagon ===<!-- This section is linked from [[Pentagram]] -->
| |
| : <math>\sin\frac{\pi}{5}=\sin 36^\circ=\tfrac14\sqrt{2(5-\sqrt5)}\,</math>
| |
| : <math>\cos\frac{\pi}{5}=\cos 36^\circ=\frac{1+\sqrt5}{4}=\tfrac{1}{2}\varphi\,</math>
| |
| ::where <math> \varphi </math> is the [[golden ratio]];
| |
| : <math>\tan\frac{\pi}{5}=\tan 36^\circ=\sqrt{5-2\sqrt5}\,</math>
| |
| : <math>\cot\frac{\pi}{5}=\cot 36^\circ=\tfrac15\sqrt{5(5+2\sqrt5)}\,</math>
| |
| | |
| === 39°: sum 18° + 21° ===
| |
| : <math>\sin\frac{13\pi}{60}=\sin 39^\circ=\tfrac1{16}[2(1-\sqrt3)\sqrt{5-\sqrt5}+\sqrt2(\sqrt3+1)(\sqrt5+1)]\,</math>
| |
| : <math>\cos\frac{13\pi}{60}=\cos 39^\circ=\tfrac1{16}[2(1+\sqrt3)\sqrt{5-\sqrt5}+\sqrt2(\sqrt3-1)(\sqrt5+1)]\,</math>
| |
| : <math>\tan\frac{13\pi}{60}=\tan 39^\circ=\tfrac14\left[(2-\sqrt3)(3-\sqrt5)-2\right]\left[2-\sqrt{2(5+\sqrt5)}\right]\,</math>
| |
| : <math>\cot\frac{13\pi}{60}=\cot 39^\circ=\tfrac14\left[(2+\sqrt3)(3-\sqrt5)-2\right]\left[2+\sqrt{2(5+\sqrt5)}\right]\,</math>
| |
| | |
| === 42°: sum 21° + 21° ===
| |
| : <math>\sin\frac{7\pi}{30}=\sin 42^\circ=\frac{\sqrt6\sqrt{5+\sqrt5}-\sqrt5+1}{8}\,</math>
| |
| : <math>\cos\frac{7\pi}{30}=\cos 42^\circ=\frac{\sqrt2\sqrt{5+\sqrt5}+\sqrt3(\sqrt5-1)}{8}\,</math>
| |
| : <math>\tan\frac{7\pi}{30}=\tan 42^\circ=\frac{\sqrt3(\sqrt5+1)-\sqrt2\sqrt{5+\sqrt5}}{2}\,</math>
| |
| : <math>\cot\frac{7\pi}{30}=\cot 42^\circ=\frac{\sqrt{2(25-11\sqrt5)}+\sqrt3(3-\sqrt5)}{2}\,</math>
| |
| | |
| === 45°: square ===
| |
| : <math>\sin\frac{\pi}{4}=\sin 45^\circ=\frac{\sqrt2}{2}=\frac{1}{\sqrt2}\,</math>
| |
| : <math>\cos\frac{\pi}{4}=\cos 45^\circ=\frac{\sqrt2}{2}=\frac{1}{\sqrt2}\,</math>
| |
| : <math>\tan\frac{\pi}{4}=\tan 45^\circ=1\,</math>
| |
| : <math>\cot\frac{\pi}{4}=\cot 45^\circ=1\,</math>
| |
| | |
| === 60°: equilateral triangle ===
| |
| : <math>\sin\frac{\pi}{3}=\sin 60^\circ=\tfrac{1}{2}\sqrt3\,</math>
| |
| : <math>\cos\frac{\pi}{3}=\cos 60^\circ=\tfrac{1}{2}\,</math>
| |
| : <math>\tan\frac{\pi}{3}=\tan 60^\circ=\sqrt3\,</math>
| |
| : <math>\cot\frac{\pi}{3}=\cot 60^\circ=\tfrac{1}{\sqrt3}\,</math>
| |
| | |
| == Notes ==
| |
| === Uses for constants ===
| |
| As an example of the use of these constants, consider a [[dodecahedron]] with the following volume, where ''a'' is the length of an edge:
| |
| : <math>V=\frac{5a^3\cos{36^\circ}}{\tan^2{36^\circ}}</math>
| |
| | |
| Using
| |
| : <math>\cos 36^\circ=\frac{\sqrt5+1}{4}\,</math>
| |
| : <math>\tan 36^\circ=\sqrt{5-2\sqrt5}\,</math>
| |
| this can be simplified to:
| |
| : <math>V=\frac{a^3(15+7\sqrt5)}{20}\,</math>
| |
| | |
| === Derivation triangles ===
| |
| [[Image:Polygontriangle.gif|thumb|right|Regular polygon (''N''-sided) and its fundamental right triangle. Angle: ''a''=180/''n'' °]]
| |
| | |
| The derivation of sine, cosine, and tangent constants into radial forms is based upon the [[constructible polygon|constructibility]] of right triangles.
| |
| | |
| Here right triangles made from symmetry sections of regular polygons are used to calculate fundamental trigonometric ratios. Each right triangle represents three points in a regular polygon: a vertex, an edge center containing that vertex, and the polygon center. An ''n''-gon can be divided into 2''n'' right triangles with angles of {180/''n'', 90−180/''n'', 90} degrees, for ''n'' in 3, 4, 5, ...
| |
| | |
| Constructibility of 3, 4, 5, and 15-sided polygons are the basis, and angle bisectors allow multiples of two to also be derived.
| |
| * [[Constructible polygon|Constructible]]
| |
| ** 3×2<sup>''n''</sup>-sided regular polygons, for ''n'' in 0, 1, 2, 3, ...
| |
| *** 30°-60°-90° triangle: [[equilateral triangle|triangle]] (3-sided)
| |
| *** 60°-30°-90° triangle: [[hexagon]] (6-sided)
| |
| *** 75°-15°-90° triangle: [[dodecagon]] (12-sided)
| |
| *** 82.5°-7.5°-90° triangle: [[icosikaitetragon]] (24-sided)
| |
| *** 86.25°-3.75°-90° triangle: [[tetracontakaioctagon]] (48-sided)
| |
| *** ...
| |
| ** 4×2<sup>''n''</sup>-sided
| |
| *** 45°-45°-90° triangle: [[square (geometry)|square]] (4-sided)
| |
| *** 67.5°-22.5°-90° triangle: [[octagon]] (8-sided)
| |
| *** 78.75°-11.25°-90° triangle: [[Hexadecagon|hexakaidecagon]] (16-sided)
| |
| *** ...
| |
| ** 5×2<sup>''n''</sup>-sided
| |
| *** 54°-36°-90° triangle: [[pentagon]] (5-sided)
| |
| *** 72°-18°-90° triangle: [[decagon]] (10-sided)
| |
| *** 81°-9°-90° triangle: [[icosagon]] (20-sided)
| |
| *** 85.5°-4.5°-90° triangle: [[tetracontagon]] (40-sided)
| |
| *** 87.75°-2.25°-90° triangle: [[octacontagon]] (80-sided)
| |
| *** ...
| |
| ** 15×2<sup>''n''</sup>-sided
| |
| *** 78°-12°-90° triangle: [[pentakaidecagon]] (15-sided)
| |
| *** 84°-6°-90° triangle: [[tricontagon]] (30-sided)
| |
| *** 87°-3°-90° triangle: [[hexacontagon]] (60-sided)
| |
| *** 88.5°-1.5°-90° triangle: [[hectoicosagon]] (120-sided)
| |
| *** 89.25°-0.75°-90° triangle: [[dihectotetracontagon]] (240-sided)
| |
| ** ... (Higher constructible regular polygons don't make whole degree angles: 17, 51, 85, 255, 257...)
| |
| * Nonconstructible (with whole or half degree angles) – No finite radical expressions involving real numbers for these triangle edge ratios are possible, therefore its multiples of two are also not possible.
| |
| ** 9×2<sup>''n''</sup>-sided
| |
| *** 70°-20°-90° triangle: [[enneagon]] (9-sided)
| |
| *** 80°-10°-90° triangle: [[octakaidecagon]] (18-sided)
| |
| *** 85°-5°-90° triangle: [[triacontakaihexagon]] (36-sided)
| |
| *** 87.5°-2.5°-90° triangle: [[heptacontakaidigon]] (72-sided)
| |
| *** ...
| |
| ** 45×2<sup>''n''</sup>-sided
| |
| *** 86°-4°-90° triangle: [[tetracontakaipentagon]] (45-sided)
| |
| *** 88°-2°-90° triangle: [[enneacontagon]] (90-sided)
| |
| *** 89°-1°-90° triangle: [[hectaoctacontagon]] (180-sided)
| |
| *** 89.5°-0.5°-90° triangle: [[trihectohexacontagon]] (360-sided)
| |
| *** ...
| |
| | |
| == Calculated trigonometric values for sine and cosine ==
| |
| === The trivial ones ===
| |
| In degree format: 0, 30, 45, 60, and 90 can be calculated from their triangles, using the Pythagorean theorem.
| |
| | |
| === ''n'' × π/(5 × 2<sup>''m''</sup>) ===
| |
| [[Image:Ptolemy Pentagon.svg|right|thumb|Chord(36°) = ''a''/''b'' = 1/''f'', from [[Ptolemy's theorem]] ]]
| |
| | |
| ==== Geometrical method ====
| |
| Applying [[Ptolemy's theorem]] to the [[cyclic quadrilateral]] ABCD defined by four successive vertices of the pentagon, we can find that:
| |
| | |
| : <math>\mathrm{crd}\ {36^\circ}=\mathrm{crd}\left(\angle\mathrm{ADB}\right)=\frac{a}{b}=\frac{2}{1+\sqrt{5}},</math>
| |
| | |
| which is the reciprocal 1/''φ'' of the [[golden ratio]]. '''Crd''' is the [[Chord (geometry)#Chords in trigonometry|Chord]] function,
| |
| | |
| : <math>\mathrm{crd}\ {\theta}=2\sin{\frac{\theta}{2}}.\,</math>
| |
| | |
| Thus
| |
| | |
| : <math>\sin{18^\circ}=\frac{1}{1+\sqrt{5}}.</math>
| |
| | |
| (Alternatively, without using Ptolemy's theorem, label as X the intersection of AC and BD, and note by considering angles that triangle AXB is [[isosceles]], so AX = AB = ''a''. Triangles AXD and CXB are [[similar triangles|similar]], because AD is parallel to BC. So XC = ''a''·(''a''/''b''). But AX + XC = AC, so ''a'' + ''a''<sup>2</sup>/''b'' = ''b''. Solving this gives ''a''/''b'' = 1/''φ'', as above).
| |
| | |
| Similarly
| |
| : <math>\mathrm{crd}\ 108^\circ=\mathrm{crd}(\angle\mathrm{ABC})=\frac{b}{a}=\frac{1+\sqrt{5}}{2},</math>
| |
| | |
| so
| |
| | |
| : <math>\sin 54^\circ=\cos 36^\circ=\frac{1+\sqrt{5}}{4}.</math>
| |
| | |
| ==== Algebraic method ====
| |
| The multiple angle formulas for functions of <math>5x\,</math>, where <math>x\in\{18,36,54,72,90\}\,</math> and <math>5x\in\{90,180,270,360,450\}\,</math>, can be solved for the functions of <math>x</math>, since we know the function values of <math>5x\,</math>. The multiple angle formulas are:
| |
| : <math>\sin{5x}=16\sin^5 x-20\sin^3 x+5\sin x\,</math>,
| |
| : <math>\cos{5x}=16\cos^5 x-20\cos^3 x+5\cos x\,</math>.
| |
| * When <math>\sin{5x}=0\,</math> or <math>\cos{5x}=0\,</math>, we let <math>y=\sin x\,</math> or <math>y=\cos x\,</math> and solve for <math>y\,</math>:
| |
| :: <math>16y^5-20y^3+5y=0\,</math>.
| |
| : One solution is zero, and the resulting 4th degree equation can be solved as a quadratic in <math>y^2\,</math>.
| |
| * When <math>\sin{5x}=1\,</math> or <math>\cos{5x}=1\,</math>, we again let <math>y=\sin x\,</math> or <math>y=\cos x\,</math> and solve for <math>y\,</math>:
| |
| :: <math>16y^5-20y^3+5y-1=0\,</math>,
| |
| : which factors into:
| |
| :: <math>(y-1)(4y^2+2y-1)^2=0\,</math>.
| |
| | |
| === ''n'' × π/20 ===
| |
| : 9° is 45-36, and 27° is 45−18; so we use the subtraction formulas for sine and cosine.
| |
| | |
| === ''n'' × π/30 ===
| |
| : 6° is 36-30, 12° is 30−18, 24° is 54−30, and 42° is 60−18; so we use the subtraction formulas for sine and cosine.
| |
| | |
| === ''n'' × π/60 ===
| |
| : 3° is 18−15, 21° is 36−15, 33° is 18+15, and 39° is 54−15, so we use the subtraction (or addition) formulas for sine and cosine.
| |
| | |
| == Strategies for simplifying expressions ==
| |
| === Rationalize the denominator ===
| |
| : If the denominator is a square root, multiply the numerator and denominator by that radical.
| |
| : If the denominator is the sum or difference of two terms, multiply the numerator and denominator by the conjugate of the denominator. The conjugate is the identical, except the sign between the terms is changed.
| |
| : Sometimes you need to rationalize the denominator more than once.
| |
| | |
| === Split a fraction in two ===
| |
| : Sometimes it helps to split the fraction into the sum of two fractions and then simplify both separately.
| |
| | |
| === Squaring and square rooting ===
| |
| : If there is a complicated term, with only one kind of radical in a term, this plan may help. Square the term, combine like terms, and take the square root. This may leave a big radical with a smaller radical inside, but it is often better than the original.
| |
| | |
| === Simplification of nested radical expressions ===
| |
| {{main|Nested radical}}
| |
| | |
| In general nested radicals cannot be reduced.
| |
| | |
| But if for <math>\sqrt{a+b\sqrt c}\,</math>,
| |
| | |
| : <math>R=\sqrt{a^2-b^2c}\,</math>
| |
| | |
| is rational, and both | |
| | |
| : <math>d=\pm\sqrt{\frac{a\pm R}{2}}\text{ and }e=\pm\sqrt{\frac{a\pm R}{2c}}\,</math>
| |
| | |
| are rational, with the appropriate choice <!-- define 'appropriate'? --> of the four ± signs, then
| |
| | |
| : <math>\sqrt{a+b\sqrt c}=d+e\sqrt c. \,</math>
| |
| | |
| For example,
| |
| | |
| : <math>4\sin{18^\circ}=\sqrt{6-2\sqrt5}=\sqrt5-1. \,</math>
| |
| | |
| == See also ==
| |
| * [[Trigonometric function]]
| |
| * [[Trigonometric identity]]
| |
| * [[Constructible polygon]]
| |
| * [[Trigonometric number]]
| |
| * [[Heptadecagon#Heptadecagon construction|17-gonal construction]]
| |
| * [[Ptolemy's table of chords]]
| |
| * [[Niven's theorem]]
| |
| | |
| == References ==
| |
| * {{MathWorld|title=Constructible polygon|urlname=ConstructiblePolygon}}
| |
| * {{MathWorld|title=Trigonometry angles|urlname=TrigonometryAngles}}
| |
| ** [http://mathworld.wolfram.com/TrigonometryAnglesPi3.html π/3 (60°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi6.html π/6 (30°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi12.html π/12 (15°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi24.html π/24 (7.5°)]
| |
| ** [http://mathworld.wolfram.com/TrigonometryAnglesPi4.html π/4 (45°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi8.html π/8 (22.5°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi16.html π/16 (11.25°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi32.html π/32 (5.625°)]
| |
| ** [http://mathworld.wolfram.com/TrigonometryAnglesPi5.html π/5 (36°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi10.html π/10 (18°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi20.html π/20 (9°)]
| |
| ** [http://mathworld.wolfram.com/TrigonometryAnglesPi7.html π/7] — ''π/14''
| |
| ** [http://mathworld.wolfram.com/TrigonometryAnglesPi9.html π/9 (20°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi18.html π/18 (10°)]
| |
| ** [http://mathworld.wolfram.com/TrigonometryAnglesPi11.html π/11]
| |
| ** [http://mathworld.wolfram.com/TrigonometryAnglesPi13.html π/13]
| |
| ** [http://mathworld.wolfram.com/TrigonometryAnglesPi15.html π/15 (12°)] — [http://mathworld.wolfram.com/TrigonometryAnglesPi30.html π/30 (6°)]
| |
| ** [http://mathworld.wolfram.com/TrigonometryAnglesPi17.html π/17]
| |
| ** ''π/19''
| |
| ** [http://mathworld.wolfram.com/TrigonometryAnglesPi23.html π/23]
| |
| * {{Cite journal
| |
| |first1=Paul
| |
| |last1=Bracken
| |
| |first2=Jiri
| |
| |last2=Cizek
| |
| |title=Evaluation of quantum mechanical perturbation sums in terms of quadratic surds and their use in approximation of zeta(3)/pi^3
| |
| |journal=Int. J. Quantum Chemistry
| |
| |volume=90
| |
| |issue=1
| |
| |year=2002
| |
| |pages=42–53
| |
| |doi=10.1002/qua.1803
| |
| }}
| |
| * {{cite arxiv
| |
| |first1=John H.
| |
| |last1=Conway
| |
| |first2=Charles
| |
| |last2=Radin | author2-link = Charles Radin
| |
| |first3=Lorenzo
| |
| |last3=Radun
| |
| |title=On angles whose squared trigonometric functions are rational
| |
| |year=1998
| |
| |eprint=math-ph/9812019
| |
| }}
| |
| * {{cite journal
| |
| |first1=John H.
| |
| |last1=Conway
| |
| |first2=Charles
| |
| |last2=Radin | author2-link = Charles Radin
| |
| |first3=Lorenzo
| |
| |last3=Radun
| |
| |title=On angles whose squared trigonometric functions are rational
| |
| |journal=Disc. and Comp. Geom.
| |
| |year=1999
| |
| |volume=22
| |
| |issue=3
| |
| |doi=10.1007/PL00009463
| |
| |pages=321–332
| |
| |mr = 1706614
| |
| }}
| |
| * {{cite journal
| |
| |first1=Kurt
| |
| |last1=Girstmair
| |
| |title=Some linear relations between values of trigonometric functions at k*pi/n
| |
| |journal=Acta Arithmetica
| |
| |volume=81
| |
| |year=1997
| |
| |pages=387–398
| |
| |mr = 1472818
| |
| }}
| |
| * {{cite journal
| |
| |first1=S.
| |
| |last1=Gurak
| |
| |title=On the minimal polynomial of gauss periods for prime powers
| |
| |journal=Mathematics of Computation
| |
| |volume=75
| |
| |year=2006
| |
| |issue=256
| |
| |pages=2021–2035
| |
| |doi=10.1090/S0025-5718-06-01885-0
| |
| |bibcode=2006MaCom..75.2021G
| |
| | mr = 2240647
| |
| }}
| |
| * {{cite journal
| |
| |first1=L. D.
| |
| |last1=Servi
| |
| |title=Nested square roots of 2
| |
| |journal=Am. Math. Monthly
| |
| |volume=110
| |
| |year=2003
| |
| |issue=4
| |
| |pages=326–330
| |
| |doi=10.2307/3647881
| |
| |mr = 1984573
| |
| |jstor = 3647881
| |
| }}
| |
| | |
| == External links ==
| |
| * [http://mathforum.org/dr.math/faq/formulas/faq.regpoly.html Constructible Regular Polygons]
| |
| * [http://mathforum.org/dr.math/faq/faq.polygon.names.html Naming polygons]
| |
| * [http://www.jdawiseman.com/papers/easymath/surds_sin_cos.html Sine and cosine in surds] includes alternative expressions in some cases as well as expressions for some other angles
| |
| | |
| {{DEFAULTSORT:Exact Trigonometric Constants}}
| |
| [[Category:Trigonometry]]
| |
| [[Category:Algebraic numbers]]
| |