|
|
Line 1: |
Line 1: |
| | | I woke up yesterday and realized - I have also been solitary for some time at the moment and following much intimidation from friends I today locate myself opted for on line dating. They assured me that there are a lot of pleasant, standard [http://www.netpaw.org Prince Tickets] and interesting folks to fulfill, so the pitch is gone by here!<br>I endeavor to maintain as toned [http://www.cinemaudiosociety.org cheap luke bryan tickets] as [http://Potentialstaying.com/ potential staying] at the gym several times per week. I love my sports and strive to play or see because many a possible. Being wintertime I'll often at Hawthorn suits. Notice: Supposing that you will contemplated shopping an activity I really do not brain, I've experienced the carnage of fumbling fits at stocktake sales.<br>My household when Is luke bryan Concert ([http://lukebryantickets.hamedanshahr.com Http://lukebryantickets.hamedanshahr.com]) and buddies are [http://lukebryantickets.citizenswebcasting.com cheap tickets luke bryan] amazing and spending some time together at pub gigabytes or dishes is consistently a necessity. As I discover that you can not have a decent dialog with all the noise I have never been in to cabarets. In addition, I got two unquestionably cheeky and very adorable canines who are invariably excited to meet up fresh individuals.<br><br>Also visit my webpage [http://www.ladyhawkshockey.org jason aldean concert] |
| [[File:Suspension train watt.svg|thumb|300px|right|A planar four-bar linkage (Watt linkage) used as a train suspension.]]
| |
| [[File:Bennett four-bar linkage.jpg|thumb|300px|right|A Bennett spatial four-bar linkage.]]
| |
| A '''four-bar linkage''', also called a '''four-bar''', is the simplest movable closed chain [[linkage (mechanical)|linkage]]. It consists of four bodies, called bars or links, connected in a loop by four joints. Generally, the joints are configured so the links move in parallel planes, and the assembly is called a ''planar four-bar linkage''.<ref>Hartenberg, R.S. & J. Denavit (1964) [http://kmoddl.library.cornell.edu/bib.php?m=23 Kinematic synthesis of linkages], New York: McGraw-Hill, online link from [[Cornell University]].</ref>
| |
| | |
| If the linkage has four hinged joints with axes angled to intersect in a single point, then the links move on concentric spheres and the assembly is called a ''spherical four-bar linkage''. ''Bennett's linkage'' is a spatial four-bar linkage with hinged joints that have their axes angled in a particular way that makes the system movable.<ref>Hunt, K. H., '''Kinematic Geometry of Mechanisms,''' Oxford Engineering Science Series, 1979</ref><ref name="McCarthy">[http://books.google.co.uk/books?id=jv9mQyjRIw4C&printsec=frontcover&dq=geometric+design+of+linkages&hl=en&ei=3L_5TcvZGaHV0QG2wMiDAw&sa=X&oi=book_result&ct=result&resnum=1&ved=0CDMQ6AEwAA#v=onepage&q&f=false J. M. McCarthy and G. S. Soh, '''Geometric Design of Linkages,''' 2nd Edition, Springer 2010]</ref>
| |
| | |
| ==Planar four-bar linkages==
| |
| [[File:4 bar linkage animated.gif|thumb]]
| |
| Planar four-bar linkages are important [[mechanism (engineering)|mechanisms]] found in [[machine (mechanical)|machines]]. The [[kinematics]] and [[Dynamics (mechanics)|dynamics]] of planar four-bar linkages are important topics in [[mechanical engineering]].
| |
| | |
| Planar four-bar linkages are constructed from four links connected in a loop by four one [[degrees of freedom (mechanics)|degree of freedom]] joints. A joint may be either a ''revolute'', that is a hinged joint, denoted by R, or a prismatic, as sliding joint, denoted by P. The planar quadrilateral linkage is formed by four links and four [[revolute joint]]s, denoted RRRR. The slider-crank linkage is constructed from four links connected by three revolute and one [[prismatic joint]], or RRRP. The double slider is a PRRP linkage.<ref name="McCarthy"/>
| |
| | |
| Planar four-bar linkages can be designed to guide a wide variety of movements.
| |
| | |
| ===Planar quadrilateral linkage===
| |
| Planar quadrilateral linkage, RRRR or 4R linkages have four rotating joints. One link of the chain is usually fixed, and is called the ''ground link'', ''fixed link'', or the ''frame''. The two links connected to the frame are called the ''grounded links'' and are generally the input and output links of the system, sometimes called the ''input link'' and ''output link''. The last link is the ''floating link'', which is also called a ''coupler'' or ''connecting rod'' because it connects an input to the output.
| |
| | |
| Assuming the frame is horizontal there are four possibilities for the input and output links:<ref name="McCarthy"/>
| |
| *A crank: can rotate a full 360 degrees
| |
| *A rocker: can rotate through a limited range of angles which does not include 0° or 180°
| |
| *A 0-rocker: can rotate through a limited range of angles which includes 0° but not 180°
| |
| *A π-rocker: can rotate through a limited range of angles which includes 180° but not 0°
| |
| Some authors do not distinguish between the types of rocker.
| |
| | |
| ====Grashof condition====
| |
| The Grashof condition for a four-bar linkage states: ''If the sum of the shortest and longest link of a planar quadrilateral linkage is less than or equal to the sum of the remaining two links, then the shortest link can rotate fully with respect to a neighboring link.'' In other words, the condition is satisfied if ''S''+''L'' ≤ ''P''+''Q'' where ''S'' is the shortest link, ''L'' is the longest, and ''P'' and ''Q'' are the other links.
| |
| | |
| ==== Classification ====
| |
| The movement of a quadrilateral linkage can be classified into eight cases based on the dimensions of its four links. Let a, b, g and h denote the lengths of the input crank, the output crank, the ground link and floating link, respectively. Then, we can construct the three terms:
| |
| | |
| <math>T_1=g+h-a-b, T_2=b+g-a-h, T_3=b+h-a-g.</math>
| |
| | |
| The movement of a quadrilateral linkage can be classified into eight types based on the positive and negative values for these three terms, T<sub>1</sub>, T<sub>2</sub>, and T<sub>3</sub>.<ref name="McCarthy"/>
| |
| {| class="wikitable"
| |
| |-
| |
| ! <math>T_1</math>
| |
| ! <math>T_2</math>
| |
| ! <math>T_3</math>
| |
| ! Grashof condition
| |
| ! Input link
| |
| ! Output link
| |
| |-
| |
| | − || − || + || Grashof || Crank || Crank
| |
| |-
| |
| | + || + || + || Grashof || Crank || Rocker
| |
| |-
| |
| | + || − || − || Grashof || Rocker || Crank
| |
| |-
| |
| | − || + || − || Grashof || Rocker || Rocker
| |
| |-
| |
| | − || − || − || Non-Grashof || 0-Rocker || 0-Rocker
| |
| |-
| |
| | − || + || + || Non-Grashof || π-Rocker || π-Rocker
| |
| |-
| |
| | + || − || + || Non-Grashof || π-Rocker || 0-Rocker
| |
| |-
| |
| | + || + || − || Non-Grashof || 0-Rocker || π-Rocker
| |
| |}
| |
| | |
| The cases of T<sub>1</sub>= 0, T<sub>2</sub>=0, and T<sub>3</sub>=0 are interesting because the linkages fold. If we distinguish folding quadrilateral linkage, then there are 27 different cases.
| |
| | |
| The figure shows examples of the various cases for a planar quadrilateral linkage.<ref>Design of Machinery 3/e, Robert L. Norton, 2 May 2003, McGraw Hill. ISBN 0-07-247046-1</ref>
| |
| [[File:Linkage four bar.svg|thumb|500px|center|Types of four-bar linkages, ''s'' = shortest link, ''l'' = longest link]] | |
| | |
| The configuration of a quadrilateral linkage may be classified into three types: convex, concave, and crossing. In the convex and concave cases no two links cross over each other. In the crossing linkage two links cross over each other. In the convex case all four internal angles are less than 180 degrees, and in the concave configuration one internal angle is greater than 180 degrees. There exists a simple geometrical relationship between the lengths of the two diagonals of the quadrilateral. For convex and crossing linkages, the length of one diagonal increases if and only if the other decreases. On the other hand, for nonconvex non-crossing linkages, the opposite is the case; one diagonal increases if and only if the other also increases.<ref>Toussaint, G. T., "Simple proofs of a geometric property of four-bar linkages," ''American Mathematical Monthly'', June/July 2003, pp. 482–494.</ref>
| |
| | |
| ==Design of four bar mechanisms==
| |
| | |
| The synthesis{{dn|date=March 2013}}, or design, of four bar [[mechanism (engineering)|mechanism]]s is important when aiming to produce a desired output motion for a specific input motion. In order to minimize cost and [[maximize efficiency]], a designer will choose the simplest mechanism possible to accomplish the desired motion. When selecting a mechanism type to be designed, link lengths must be determined by a process called dimensional synthesis. Dimensional synthesis involves an ''iterate-and-analyze'' [[methodology]] which in certain circumstances can be an inefficient process; however, in unique scenarios, exact and detailed procedures to design an accurate mechanism may not exist.<ref name="Myszka">{{cite book|last=Myszka|first=David|title=Machines and Mechanisms: Applied Kinematic Analysis|year=2012|publisher=Pearson Education|location=New Jersey|isbn=978-0-13-215780-3}}</ref>
| |
| | |
| ===Time ratio===
| |
| | |
| The time [[ratio]] (''Q'') of a four bar mechanism is a measure of its quick return and is defined as follows:<ref name="Myszka" />
| |
| | |
| :{{math|<VAR>Q</VAR>}} {{=}} <math>\tfrac{Time of slower stroke}{Time of quicker stroke}</math> ''≥ 1''
| |
| | |
| With four bar mechanisms there are two [[strokes]], the forward and return, which when added together create a cycle. Each stroke may be identical or have different average speeds. The time ratio numerically defines how fast the [[forward stroke]] is compared to the quicker [[return stroke]]. The total cycle time ({{math|<VAR>Δt<sub>cycle</sub></VAR>}}) for a mechanism is:<ref name="Myszka" />
| |
| | |
| :{{math|<VAR>Δt<sub>cycle</sub></VAR>}} {{=}} {{math|<VAR>Time of slower stroke</VAR> + <VAR>Time of quicker stroke</VAR>}}
| |
| | |
| Most four bar mechanisms are driven by a rotational actuator, or crank, that requires a specific constant speed. This required speed (''ω<sub>crank</sub>'')is related to the cycle time as follows:<ref name="Myszka" />
| |
| | |
| :{{math|<VAR>ω<sub>crank</sub></VAR>}} = ''(<VAR>Δt<sub>cycle</sub></VAR>)<sup>-1</sup>''
| |
| | |
| Some mechanisms that produce reciprocating, or repeating, motion are designed to produce [[symmetrical]] motion. That is, the forward stroke of the machine moves at the same pace as the return stroke. These mechanisms, which are often referred to as ''in-line'' design, usually do work in both directions, as they exert the same [[force]] in both directions.<ref name="Myszka" />
| |
| | |
| Examples of symmetrical motion mechanisms include:
| |
| * Windshield wipers
| |
| * Engine mechanisms or pistons
| |
| * Automobile window crank
| |
| | |
| Other applications require that the mechanism-to-be-designed has a faster average speed in one direction than the other. This category of mechanism is most desired for design when work is only required to operate in one direction. The speed at which this one stroke operates is also very important in certain machine applications. In general, the return and work-non-intensive stroke should be accomplished as fast as possible. This is so the majority of time in each cycle is allotted for the work-intensive stroke. These ''quick-return'' mechanisms are often referred to as ''offset''.<ref name="Myszka" />
| |
| | |
| Examples of offset mechanisms include:
| |
| * Cutting machines
| |
| * Package-moving devices
| |
| | |
| With offset mechanisms, it is very important to understand how and to what degree the offset affects the time ratio. ''To relate the geometry of a specific linkage to the timing of the stroke, an imbalance{{dn|date=March 2013}} angle (''β'') is used.'' This angle is related to the time ratio, ''Q'', as follows:<ref name="Myszka" />
| |
| | |
| :{{math|<VAR>Q</VAR>}} {{=}} {{math|(180° + ''β'') ÷ (180° - ''β'')}}
| |
| | |
| Through simple algebraic rearrangement, this equation can be rewritten to solve for ''β'':<ref name="Myszka" />
| |
| | |
| :{{math|<VAR>β</VAR>}} {{=}} {{math|180°}} <math>\times</math> <math>\tfrac{Q - 1}{Q + 1}</math>
| |
| | |
| ===Timing charts===
| |
| | |
| Timing charts are often used to synchronize the [[motion (physics)|motion]] between two or more mechanisms. They graphically display information showing where and when each mechanism is stationary or performing its forward and return strokes. Timing charts allow designers to qualitatively describe the required [[kinematic]] behavior of a mechanism.<ref name="Myszka" />
| |
| | |
| These charts are also used to estimate the velocities and accelerations of certain four bar links. ''The [[velocity]] of a link is the time rate at which its position is changing, while the link's [[acceleration]] is the time rate at which its velocity is changing.'' Both velocity and acceleration are [[Euclidean vector|vector]] quantities, in that they have both [[magnitude (mathematics)|magnitude]] and [[direction (geometry)|direction]]; however, only their magnitudes are used in timing charts. When used with two mechanisms, timing charts assume [[constant acceleration]]. This assumption produces [[polynomial equations]] for velocity as a function of time. Constant acceleration allows for the velocity vs. time graph to appear as straight lines, thus designating a relationship between [[displacement (vector)|displacement]] (''ΔR''), maximum velocity (''v<sub>peak</sub>''), acceleration (''a''), and time(''Δt''). The following equations show this.<ref name="Myszka" /><ref name=Chak>{{cite book|last=Chakrabarti|first=Amaresh|title=Engineering Design Synthesis: Understanding, Approaches and Tools|year=2002|publisher=Springer-Verlag London Limited|location=Great Britain|isbn=1852334924}}</ref>
| |
| | |
| :{{math|''ΔR''}} ''='' <math>\tfrac{1}{2}</math>{{math|''v<sub>peak</sub>''}}{{math|''Δt''}}
| |
| | |
| :{{math|''ΔR''}} ''='' <math>\tfrac{1}{4}</math>{{math|''a''}}{{math|''(Δt)^2''}} | |
| | |
| Given the displacement and time, both the maximum velocity and acceleration of each mechanism in a given pair can be calculated.<ref name="Myszka" />
| |
| | |
| ===Design of slider-crank mechanism===
| |
| {{split|Crank-slider|date=October 2013}}
| |
| {{merge from|Slider crank chain inversion|date=October 2013}}
| |
| | |
| Slider-crank mechanisms involve both rotational and linear motion. For most of these mechanisms, a crank rotates at constant speed in order to repeatedly move an object in a linear motion to perform some task. This device is a simple way to convert rotational motion to [[reciprocating motion]].<ref name="Myszka" />
| |
| | |
| With [[engines]], for example, a crank continuously rotates which forces many pistons to move linearly back and forth through cylindrical chambers.<ref name="Myszka" />
| |
| | |
| There are two types of slider-cranks: in-line and offset.
| |
| There are also two methods to design each type: [[graphical]] and [[Analytical mechanics|analytical]]{{dn|date=March 2013}}.<ref name="Myszka" />
| |
| | |
| ====In-line design====
| |
| | |
| [[File:Slider Crank animation.svg|thumb|In-line Slider Crank animation]]An in-line crank slider is oriented in a way in which the pivot point of the crank is coincident with the axis of the linear movement. The follower arm, which is the link that connects the crank arm to the slider, connects to a pin in the center of sliding object. This pin is considered to be on the linear movement axis. Therefore, to be considered an ''in-line'' crank slider, the pivot point of the crank arm must be ''in-line'' with this pin point. The [[stroke]]({{math|(ΔR<sub>4</sub>)<sub>max</sub>}}) of an in-line crank slider is defined as the maximum linear distance the slider may travel between the two extreme points of its motion. With an in-line crank slider, the motion of the crank and follower links is [[symmetric]] about the sliding [[Basis (linear algebra)|axis]]. This means that the crank angle required to execute a forward stroke is equivalent to the angle required to perform a reverse stroke. ''For this reason, the in-line slider-crank mechanism produces balanced motion.'' This balanced motion implies other ideas as well. Assuming the crank arm is driven by a constant [[force]] and therefore constant [[velocity]], the time it takes to perform a forward stroke is equal to the time it takes to perform a reverse stroke.<ref name="Myszka" />
| |
|
| |
| =====Graphical approach=====
| |
| | |
| The [[graphical]] method of designing an in-line slider-crank mechanism involves the usage of hand-drawn or computerized [[diagrams]]. These diagrams are drawn to [[scale (ratio)|scale]] in order for easy evaluation and successful design. Basic [[trigonometry]], the practice of analyzing the relationship between triangle features in order to determine any unknown values, can be used with a graphical [[compass]] and [[protractor]] alongside these diagrams to determine the required stroke or link lengths.<ref name="Myszka" />
| |
| | |
| When the stroke of a mechanism needs to be calculated, first identify the ground level for the specified slider-crank mechanism. This ground level is the axis on which both the crank arm pivot-point and the slider pin are positioned. Draw the crank arm pivot point anywhere on this ground level. Once the pin positions are correctly placed, set a graphical compass to the given link length of the crank arm. Positioning the compass point on the pivot point of the crank arm, rotate the compass to produce a circle with radius equal to the length of the crank arm. This newly drawn circle represents the potential motion of the crank arm. Next, draw two models of the mechanism. These models will be oriented in a way that displays both the extreme positions of the slider. Once both diagrams are drawn, the linear distance between the retracted slider and the extended slider can be easily measured to determine the slider-crank stroke.<ref name="Myszka" />
| |
| | |
| The retracted position of the slider is determined by further graphical evaluation. Now that the crank path is found, draw the crank slider arm in the position that places it as far away as possible from the slider. Once drawn, the crank arm should be coincident with the ground level axis that was initially drawn. Next, from the free point on the crank arm, draw the follower link using its measured or given length. Draw this length coincident with the ground level axis but in the direction toward the slider. The unhinged end of the follower will now be at the fully retracted position of the slider. Next, the extended position of the slider needs to be determined. From the pivot point of the crank arm, draw a new crank arm coincident with the ground level axis but in a position closest to the slider. This position should put the new crank arm at an angle of 180 degrees away from the retracted crank arm. Then draw the follower link with its given length in the same manner as previously mentioned. The unhinged point of the new follower will now be at the fully extended position of the slider.<ref name="Myszka" />
| |
| | |
| Both the retracted and extended positions of the slider should now be known. Using a measuring ruler, measure the distance between these two points. This distance will be the mechanism stroke, ({{math|(ΔR<sub>4</sub>)<sub>max</sub>}}).<ref name="Myszka" />
| |
| | |
| =====Analytical approach=====
| |
| | |
| To analytically design an in-line crank slider and achieve the desired stroke, the appropriate lengths of the two links, the crank and follower, need to be determined . For this case, the crank arm will be referred to as ''L<sub>2</sub>'', and the follower link will be referred to as ''L<sub>3</sub>''. With all in-line slider-crank mechanisms, the stroke is twice the length of the crank arm. Therefore, given the stroke, the length of the crank arm can be determined. This relationship is represented as:<ref name="Myszka" />
| |
| | |
| :{{math|L<sub>2</sub>}} {{=}} {{math|(ΔR<sub>4</sub>)<sub>max</sub> ÷ 2}}
| |
| | |
| Once ''L<sub>2</sub>'' is found, the follower length (''L<sub>3</sub>'') can be determined. However, because the stroke of the mechanism only depends on the crank arm length, the follower length is somewhat insignificant. As a general rule, the length of the follower link should be at least 3 times the length of the crank arm. This is to account for an often undesired increased acceleration [[Yield (engineering)|yield]]{{dn|date=March 2013}}, or output, of the connecting arm. <ref name="Myszka" />
| |
| | |
| ====Offset design====
| |
| | |
| ''With an offset slider-crank mechanism, an offset distance is introduced.'' This offset distance is referred to as ''L<sub>1</sub>'' and is the fixed distance between the crank arm pivot point and the slider axis. This offset distance means that the slider-crank motion is no longer symmetrical about the sliding axis. In addition, the required crank angles of the forward and reverse strokes are no longer equivalent. ''An offset slider-crank provides a quick return when a slower working stroke is desired.''<ref name="Myszka" />
| |
| | |
| With offset slider-cranks, the ''stroke is always twice the crank length, and as the offset distance increases, the stroke also becomes larger.'' The potential range for the offset distance can be written in relation to the other mechanism lengths, ''L<sub>2</sub>''and ''L<sub>3</sub>'', as the equation:<ref name="Myszka" />
| |
| | |
| :{{math|L<sub>1</sub>}} ''<'' {{math|L<sub>3</sub> - L<sub>2</sub>}}
| |
| | |
| The design of an in-line crank slider mechanism involves finding the two link lengths, ''L<sub>2</sub>''and ''L<sub>3</sub>'', and an appropriate offset distance,''L<sub>1</sub>'', in order to achieve the wanted stroke,''(ΔR<sub>4</sub>)<sub>max</sub>'', and imbalance angle, ''β''.
| |
| | |
| =====Analytical approach=====
| |
| | |
| The [[analytical method]] for designing an offset crank slider mechanism is the process by which triangular [[geometry]] is evaluated in order to determine generalized relationships among certain lengths, distances, and angles. These generalized relationships are displayed in the form of 3 equations and can be used to determine unknown values for almost any offset slider-crank. These equations express the link lengths, ''L<sub>1</sub>, L<sub>2</sub>, and L<sub>3</sub>'', as a function of the stroke,''(ΔR<sub>4</sub>)<sub>max</sub>'', the imbalance angle, ''β'', and the angle of an arbitrary line ''M'', ''θ<sub>M</sub>''. Arbitrary line ''M'' is a designer-unique line that runs through the crank pivot point and the extreme retracted slider position. The 3 equations are as follows:<ref name="Myszka" />
| |
| | |
| :{{math|L<sub>1</sub>}} {{=}} {{math|(ΔR<sub>4</sub>)<sub>max</sub>}} × {{math|[''(sin(θ<sub>M</sub>)sin(θ<sub>M</sub> - β)) / sin(β)'']}}
| |
| | |
| :{{math|L<sub>2</sub>}} {{=}} {{math|(ΔR<sub>4</sub>)<sub>max</sub>}} × {{math|[''(sin(θ<sub>M</sub>) - sin(θ<sub>M</sub> - β)) / 2sin(β)'']}}
| |
| | |
| :{{math|L<sub>3</sub>}} {{=}} {{math|(ΔR<sub>4</sub>)<sub>max</sub>}} × {{math|[''(sin(θ<sub>M</sub>) + sin(θ<sub>M</sub> - β)) / 2sin(β)'']}}
| |
| | |
| With these relationships, the 3 link lengths can be calculated and any related unknown values can be determined.
| |
| | |
| ==Examples==
| |
| [[File:MtbFrameGeometry FSR.png|thumb|right|A four-bar linkage used as the suspension for a bicycle. If we count the two bars that form the shock absorber attached to the output link, then this is a Watt II six-bar linkage]]
| |
| * [[Pantograph]] (four-bar, two [[degrees of freedom (mechanics)|degrees of freedom]], i.e., only one pivot joint is fixed.)
| |
| * '''Crank-slider''', (four-bar, one degree of freedom)
| |
| * [[Double wishbone suspension]]
| |
| * [[Watt's linkage]] and [[Chebyshev linkage]] (linkages that approximate straight line motion)
| |
| * [[Linkage_(mechanical)#Biological linkages|Biological linkages]]
| |
| * [[Bicycle suspension]]
| |
| | |
| ==See also==
| |
| * [[Burmester's theory]]
| |
| * [[Cognate linkage]]
| |
| * [[Glider (furniture)]]
| |
| | |
| ==References==
| |
| {{Reflist}}
| |
| | |
| ==External links==
| |
| {{commons category}}
| |
| * [http://kmoddl.library.cornell.edu/model.php?m=234 The four-bar linkages in the collection of Reuleaux models at Cornell University]
| |
| * [http://www.mechanisms101.com/fourbar01.html mechanisms101.com] – Flash Four-bar Linkages simulator
| |
| * [http://mechanicaldesign101.com/category/linkage-animation/ Linkage animations on mechanicaldesign101.com include planar and spherical four-bar and six-bar linkages.]
| |
| * [http://synthetica.eng.uci.edu/~mccarthy/Linkages.html Animations of planar and spherical four-bar linkages.]
| |
| * [http://synthetica.eng.uci.edu/~mccarthy/CoursePages/Synthesis/Bennett_Linkage_2.gif Animation of Bennett's linkage.]
| |
| | |
| [[Category:Kinematics]]
| |
| [[Category:Machines]]
| |
| [[Category:Mechanisms]]
| |
| [[Category:Linkages]]
| |