IJK: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>BG19bot
m WP:CHECKWIKI error fix for #64. Do general fixes if a problem exists. - using AWB (9549)
en>Cowlibob
mNo edit summary
 
Line 1: Line 1:
[[File:Parabolic cylindrical coordinates.png|thumb|right|350px|[[Coordinate system#Coordinate surface|Coordinate surfaces]] of parabolic cylindrical coordinates.  Parabolic cylinder functions occur when [[separation of variables]] is used on [[Laplace equation|Laplace's equation]] in these coordinates]]
I'm Curt and I live in Genthin. <br>I'm interested in Comparative Politics, Creative writing and Vietnamese art. I like travelling and reading fantasy.<br><br>my website :: [http://africanchildinneed.org/guestbook.html FIFA Coin Generator]
 
In [[mathematics]], the '''parabolic cylinder functions''' are [[special function]]s defined as solutions to the differential equation
 
:<math>\frac{d^2f}{dz^2} + \left(\tilde{a}z^2+\tilde{b}z+\tilde{c}\right)f=0.</math>
 
This equation is found when the technique of [[separation of variables]] is used on [[Laplace equation|Laplace's equation]] when expressed in [[parabolic cylindrical coordinates]].
 
The above equation may be brought into two distinct forms (A) and (B) by  [[completing the square]] and rescaling ''z'', called [[H. F. Weber]]'s equations {{harv|Weber|1869}}:
:<math>\frac{d^2f}{dz^2} - \left(\tfrac14z^2+a\right)f=0</math>&nbsp;&nbsp;&nbsp;&nbsp;(A)
 
and
 
:<math>\frac{d^2f}{dz^2} + \left(\tfrac14z^2-a\right)f=0.</math>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(B)
 
If
 
:<math>f(a,z)\,</math>
 
is a solution, then so are
 
:<math>f(a,-z), f(-a,iz)\text{ and  }f(-a,-iz).\,</math>
 
If
 
:<math>f(a,z)\,</math>
 
is a solution of equation (A), then
 
:<math>f(-ia,ze^{(1/4)\pi i})\,</math>
 
is a solution of (B), and, by symmetry,
 
:<math>f(-ia,-ze^{(1/4)\pi i}), f(ia,-ze^{-(1/4)\pi i})\text{ and }f(ia,ze^{-(1/4)\pi i})\,</math>
 
are also solutions of (B).
 
==Solutions==
 
There are independent even and odd solutions of the form (A). These are given by (following the notation of [[Abramowitz and Stegun]] (1965)):
 
:<math>y_1(a;z) = \exp(-z^2/4) \;_1F_1
\left(\tfrac12a+\tfrac14; \;
\tfrac12\; ; \; \frac{z^2}{2}\right)\,\,\,\,\,\, (\mathrm{even})</math>
 
and
 
:<math>y_2(a;z) = z\exp(-z^2/4) \;_1F_1
\left(\tfrac12a+\tfrac34; \;
\tfrac32\; ; \; \frac{z^2}{2}\right)\,\,\,\,\,\, (\mathrm{odd})</math>
 
where <math>\;_1F_1 (a;b;z)=M(a;b;z)</math> is the [[confluent hypergeometric function]].
 
Other pairs of independent solutions may be formed from linear combinations of the above solutions (see Abramowitz and Stegun). One such pair is based upon their behavior at infinity:
 
:<math>
U(a,z)=\frac{1}{2^\xi\sqrt{\pi}}
\left[
\cos(\xi\pi)\Gamma(1/2-\xi)\,y_1(a,z)
-\sqrt{2}\sin(\xi\pi)\Gamma(1-\xi)\,y_2(a,z)
\right]
</math>
 
:<math>
V(a,z)=\frac{1}{2^\xi\sqrt{\pi}\Gamma[1/2-a]}
\left[
\sin(\xi\pi)\Gamma(1/2-\xi)\,y_1(a,z)
+\sqrt{2}\cos(\xi\pi)\Gamma(1-\xi)\,y_2(a,z)
\right]
</math>
 
where
:<math>
\xi=\frac{1}{2}a+\frac{1}{4} .
</math>
 
The function ''U''(''a'',&nbsp;''z'') approaches zero for large values of |z|&nbsp; and |arg(''z'')|&nbsp;<&nbsp;π/2, while ''V''(''a'',&nbsp;''z'') diverges for large values of positive real ''z''&nbsp;.
 
:<math>
\lim_{|z|\rightarrow\infty}U(a,z)/e^{-z^2/4}z^{-a-1/2}=1\,\,\,\,(\text{for}\,|\arg(z)|<\pi/2)
</math>
 
and
 
:<math>
\lim_{|z|\rightarrow\infty}V(a,z)/\sqrt{\frac{2}{\pi}}e^{z^2/4}z^{a-1/2}=1\,\,\,\,(\text{for}\,\arg(z)=0) .
</math>
 
For [[half-integer]] values of ''a'', these (that is, ''U'' and ''V'') can be re-expressed in terms of [[Hermite polynomials]]; alternatively, they can also be expressed in terms of [[Bessel function]]s.
 
The functions  ''U'' and ''V'' can also be related to the functions ''D<sub>p</sub>''(''x'') (a notation dating back to Whittaker (1902)) that are themselves sometimes called parabolic cylinder functions (see Abramowitz and Stegun (1965)):
:<math>U(a,x)=D_{-a-\tfrac12}(x),</math>
:<math>V(a,x)=\frac{\Gamma(\tfrac12+a)}{\pi}[\sin( \pi a) D_{-a-\tfrac12}(x)+D_{-a-\tfrac12}(-x)]  .</math>
 
{{no footnotes|date=December 2010}}
 
== References ==
 
* {{AS ref |19|686}}
*{{springer|id=W/w097310|title=Weber equation|first=N.Kh.|last= Rozov}}
*{{dlmf|id=12|first=N. M. |last=Temme}}
*Weber, H.F. (1869)  "Ueber die Integration der partiellen Differentialgleichung <math>\partial^2u/\partial x^2+\partial^2u/\partial y^2+k^2u=0</math>". ''Math. Ann.'', 1, 1–36
*Whittaker, E.T. (1902) "On the functions associated with the parabolic cylinder in harmonic analysis" ''Proc. London Math. Soc.''35, 417–427.
 
{{DEFAULTSORT:Parabolic Cylinder Function}}
[[Category:Special hypergeometric functions]]

Latest revision as of 18:56, 6 May 2014

I'm Curt and I live in Genthin.
I'm interested in Comparative Politics, Creative writing and Vietnamese art. I like travelling and reading fantasy.

my website :: FIFA Coin Generator