Bohm diffusion: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>RockMagnetist
m added wlink
en>ArzhurBZH
m Description: Replaced <> with \left\langle \right\rangle in the second equation.
 
Line 1: Line 1:
In [[mathematics]], Heine's '''basic hypergeometric series''', or '''hypergeometric q-series''', are [[q-analog]] generalizations of [[generalized hypergeometric series]], and are in turn generalized by [[elliptic hypergeometric series]]. 
Nice to meet you, my name is Refugia. Years in the past we moved to Puerto Rico and my family enjoys it. Since she was 18 she's been working as a receptionist but her marketing never arrives. Doing ceramics is what her family members and her enjoy.<br><br>Here is my blog ... [http://l.Keroup.com/healthymealsdelivered68340 healthy meals delivered]
A series ''x''<sub>''n''</sub> is called hypergeometric if the ratio of successive terms ''x''<sub>''n''+1</sub>/''x''<sub>''n''</sub> is a [[rational function]] of ''n''.  If the ratio of successive terms is a rational function of ''q''<sup>''n''</sup>, then the series is called a basic hypergeometric series. The number ''q'' is called the base.
 
The basic hypergeometric series <sub>2</sub>φ<sub>1</sub>(''q''<sup>α</sup>,''q''<sup>β</sup>;''q''<sup>γ</sup>;''q'',''x'') was first considered by {{harvs|txt|authorlink=Eduard Heine|first=Eduard|last= Heine|year=1846}}. It becomes the hypergeometric series ''F''(α,β;γ;''x'') in the limit when the base ''q'' is 1.
 
==Definition==
There are two forms of basic hypergeometric series,  the '''unilateral basic hypergeometric series''' φ, and the more general '''bilateral basic geometric series''' ψ.
The '''unilateral basic hypergeometric series''' is defined as
 
:<math>\;_{j}\phi_k \left[\begin{matrix}
a_1 & a_2 & \ldots & a_{j} \\
b_1 & b_2 & \ldots & b_k \end{matrix}
; q,z \right] = \sum_{n=0}^\infty 
\frac {(a_1, a_2, \ldots, a_{j};q)_n} {(b_1, b_2, \ldots, b_k,q;q)_n} \left((-1)^nq^{n\choose 2}\right)^{1+k-j}z^n</math>
 
where
 
:<math>(a_1,a_2,\ldots,a_m;q)_n = (a_1;q)_n (a_2;q)_n \ldots (a_m;q)_n</math>
and where
:<math>(a;q)_n = \prod_{k=0}^{n-1} (1-aq^k)=(1-a)(1-aq)(1-aq^2)\cdots(1-aq^{n-1}).</math>
 
is the [[q-shifted factorial]].
The most important special case is when ''j'' = ''k''+1, when it becomes
:<math>\;_{k+1}\phi_k \left[\begin{matrix}
a_1 & a_2 & \ldots & a_{k}&a_{k+1} \\
b_1 & b_2 & \ldots & b_{k} \end{matrix}
; q,z \right] = \sum_{n=0}^\infty 
\frac {(a_1, a_2, \ldots, a_{k+1};q)_n} {(b_1, b_2, \ldots, b_k,q;q)_n} z^n.</math>
This series is called balanced if ''a''<sub>1</sub>''...''a''<sub>''k''+1</sub>'' = ''b''<sub>1</sub>...''b''<sub>''k''</sub>''q''.
This series is called well poised if ''a''<sub>1</sub>''q'' = ''a''<sub>2</sub>''b''<sub>1</sub> = ... = ''a''<sub>k+1</sub>''b''<sub>''k''</sub>, and very well poised if in addition  ''a''<sub>2</sub> = &minus;''a''<sub>3</sub> = ''qa''<sub>1</sub><sup>1/2</sup>.
 
The '''bilateral basic hypergeometric series''', corresponding to the [[bilateral hypergeometric series]], is defined as
 
:<math>\;_j\psi_k \left[\begin{matrix}
a_1 & a_2 & \ldots & a_j \\
b_1 & b_2 & \ldots & b_k  \end{matrix}
; q,z \right] = \sum_{n=-\infty}^\infty 
\frac {(a_1, a_2, \ldots, a_j;q)_n} {(b_1, b_2, \ldots, b_k;q)_n}  \left((-1)^nq^{n\choose 2}\right)^{k-j}z^n.</math>
 
The most important special case is when ''j'' = ''k'', when it becomes
:<math>\;_k\psi_k \left[\begin{matrix}
a_1 & a_2 & \ldots & a_k \\
b_1 & b_2 & \ldots & b_k  \end{matrix}
; q,z \right] = \sum_{n=-\infty}^\infty 
\frac {(a_1, a_2, \ldots, a_k;q)_n} {(b_1, b_2, \ldots, b_k;q)_n} z^n.</math>
 
The unilateral series can be obtained as a special case of the bilateral one by setting one of the ''b'' variables equal to ''q'', at least when none of the ''a'' variables is a power of ''q''., as all the terms with ''n''<0 then vanish.
 
==Simple series==
Some simple series expressions include
 
:<math>\frac{z}{1-q} \;_{2}\phi_1 \left[\begin{matrix}
q \; q \\
q^2  \end{matrix}\;  ; q,z \right] =
\frac{z}{1-q}
+ \frac{z^2}{1-q^2}
+ \frac{z^3}{1-q^3}
+ \ldots </math>
 
and
 
:<math>\frac{z}{1-q^{1/2}} \;_{2}\phi_1 \left[\begin{matrix}
q \; q^{1/2} \\
q^{3/2}  \end{matrix}\;  ; q,z \right] =
\frac{z}{1-q^{1/2}}
+ \frac{z^2}{1-q^{3/2}}
+ \frac{z^3}{1-q^{5/2}}
+ \ldots </math>
 
and
 
:<math>\;_{2}\phi_1 \left[\begin{matrix}
q \; -1 \\
-q  \end{matrix}\;  ; q,z \right] = 1+
\frac{2z}{1+q}
+ \frac{2z^2}{1+q^2}
+ \frac{2z^3}{1+q^3}
+ \ldots. </math>
 
==The ''q''-binomial theorem==
The ''q''-binomial theorem (first published in 1811 by [[Heinrich August Rothe]])<ref>{{citation
| last = Bressoud | first = D. M.
| doi = 10.1017/S0305004100058114
| issue = 2
| journal = Mathematical Proceedings of the Cambridge Philosophical Society
| mr = 600238
| pages = 211–223
| title = Some identities for terminating ''q''-series
| volume = 89
| year = 1981}}.</ref><ref>{{citation
| last = Benaoum | first = H. B.
| arxiv = math-ph/9812011
| doi = 10.1088/0305-4470/31/46/001
| issue = 46
| journal = Journal of Physics A: Mathematical and General
| pages = L751–L754
| title = ''h''-analogue of Newton's binomial formula
| volume = 31}}.</ref> states that
 
:<math>\;_{1}\phi_0 (a;q,z) =\frac{(az;q)_\infty}{(z;q)_\infty}= \prod_{n=0}^\infty
\frac {1-aq^n z}{1-q^n z}</math>
 
which follows by repeatedly applying the identity
:<math>\;_{1}\phi_0 (a;q,z) =
\frac {1-az}{1-z} \;_{1}\phi_0 (a;q,qz).</math>
 
The special case of ''a''&nbsp;=&nbsp;0 is closely related to the [[q-exponential]].
 
==Ramanujan's identity==
[[Ramanujan]] gave the identity
 
:<math>\;_1\psi_1 \left[\begin{matrix} a \\ b \end{matrix} ; q,z \right]
= \sum_{n=-\infty}^\infty \frac {(a;q)_n} {(b;q)_n} z^n
= \frac {(b/a,q,q/az,az;q)_\infty }
{(b,b/az,q/a,z;q)_\infty} </math>
 
valid for |''q''|&nbsp;&lt;&nbsp;1 and |''b''/''a''|&nbsp;&lt;&nbsp;|''z''|&nbsp;&lt;&nbsp;1. Similar identities for <math>\;_6\psi_6</math> have been given by Bailey. Such identities can be understood to be generalizations of the [[Jacobi triple product]] theorem, which can be written using q-series as
 
:<math>\sum_{n=-\infty}^\infty q^{n(n+1)/2}z^n =
(q;q)_\infty \; (-1/z;q)_\infty \; (-zq;q)_\infty.</math>
 
[[Ken Ono]] gives a related [[formal power series]]
 
:<math>A(z;q) \stackrel{\rm{def}}{=} \frac{1}{1+z} \sum_{n=0}^\infty
\frac{(z;q)_n}{(-zq;q)_n}z^n =
\sum_{n=0}^\infty (-1)^n z^{2n} q^{n^2}.</math>
 
==Watson's contour integral==
As an analogue of the [[Barnes integral]] for the hypergeometric series, Watson showed that
:<math>
{}_2\phi_1(a,b;c;q,z) = \frac{-1}{2\pi i}\frac{(a,b;q)_\infty}{(q,c;q)_\infty}
\int_{-i\infty}^{i\infty}\frac{(qq^s,cq^s;q)_\infty}{(aq^s,bq^s;q)_\infty}\frac{\pi(-z)^s}{\sin \pi s}ds
</math>
where the poles of <math>(aq^s,bq^s;q)_\infty</math> lie to the left of the contour and the remaining poles lie to the right. There is a similar contour integral for <sub> ''r''+1</sub>φ<sub>''r''</sub>. This contour integral gives an analytic continuation of the basic hypergeometric function in ''z''.
 
==Notes==
{{reflist}}
 
==References==
*{{dlmf|id=17|first=G. E.|last=Andrews|title=q-Hypergeometric and Related Functions}}
* W.N. Bailey, ''Generalized Hypergeometric Series'', (1935) Cambridge Tracts in Mathematics and Mathematical Physics, No.32, Cambridge University Press, Cambridge.
* William Y. C. Chen and Amy Fu, ''[http://cfc.nankai.edu.cn/publications/04-accepted/Chen-Fu-04A/semi.pdf Semi-Finite Forms of Bilateral Basic Hypergeometric Series]'' (2004)
* Gwynneth H. Coogan and [[Ken Ono]], ''[http://www.math.wisc.edu/~ono/reprints/067.pdf A q-series identity and the Arithmetic of Hurwitz Zeta  Functions]'', (2003) Proceedings of the [[American Mathematical Society]] '''131''', pp.&nbsp;719–724
* Sylvie Corteel and Jeremy Lovejoy, ''[http://www.labri.fr/Perso/~lovejoy/1psi1.pdf  Frobenius Partitions and the Combinatorics of Ramanujan's <math>\,_1\psi_1</math> Summation]''
*{{Citation | last1=Fine | first1=Nathan J. | title=Basic hypergeometric series and applications | url=http://www.ams.org/bookstore?fn=20&arg1=survseries&ikey=SURV-27 | publisher=[[American Mathematical Society]] | location=Providence, R.I. | series=Mathematical Surveys and Monographs | isbn=978-0-8218-1524-3 | mr=956465 | year=1988 | volume=27}}
*{{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=[[Cambridge University Press]] | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | doi=10.2277/0521833574 | mr=2128719 | year=2004 | volume=96}}
*{{citation|first=Eduard |last=Heine|year=1846|journal= Journal für die reine und angewandte Mathematik|pages=210–212|volume=32|title=Über die Reihe <math>1+\frac{(q^\alpha-1)(q^\beta-1)}{(q-1)(q^\gamma-1)}x + \frac{(q^\alpha-1)(q^{\alpha+1}-1)(q^\beta-1)(q^{\beta+1}-1)}{(q-1)(q^2-1)(q^\gamma-1)(q^{\gamma+1}-1)}x^2+\cdots</math>|url=http://resolver.sub.uni-goettingen.de/purl?GDZPPN002145391}}
* [[Eduard Heine]], ''Theorie der Kugelfunctionen'', (1878) ''1'', pp 97–125.
* Eduard Heine, ''Handbuch die Kugelfunctionen. Theorie und Anwendung'' (1898) Springer, Berlin.
 
[[Category:Q-analogs]]
[[Category:Hypergeometric functions]]

Latest revision as of 21:30, 4 November 2014

Nice to meet you, my name is Refugia. Years in the past we moved to Puerto Rico and my family enjoys it. Since she was 18 she's been working as a receptionist but her marketing never arrives. Doing ceramics is what her family members and her enjoy.

Here is my blog ... healthy meals delivered