|
|
Line 1: |
Line 1: |
| {{for|the theorem in algebraic number theory|Bauer's theorem}}
| | The title of the author is Numbers but it's not the home std [http://www.animecontent.com/blog/124234 at home std test] test most masucline name out there. One of the very very best things in the world for him is to collect badges but he is having difficulties to find time for it. For many years he's been operating as a receptionist. Puerto Rico std testing at home is exactly where he's usually at home std testing been living but she needs to transfer simply because of her family members.<br><br>Also visit [http://www.beasts-of-america.com/beasts/groups/curing-your-candida-how-to-do-it-easily/ home std test] my homepage: home [http://Www.Onhealth.com/genital_herpes_in_women/article.htm std test] kit ([https://healthcoachmarketing.zendesk.com/entries/53672184-Candida-Tips-And-Cures-That-May-Meet-Your-Needs simply click the up coming internet site]) |
| In [[mathematics]], the '''Bauer–Fike theorem''' is a standard result in the [[perturbation theory]] of the [[eigenvalue]] of a complex-valued [[diagonalizable|diagonalizable matrix]]. In its substance, it states an absolute upper bound for the deviation of one perturbed matrix eigenvalue from a properly chosen eigenvalue of the exact matrix. Informally speaking, what it says is that ''the sensitivity of the eigenvalues is estimated by the condition number of the matrix of eigenvectors''.
| |
| | |
| ==Theorem ([[Friedrich L. Bauer]], C.T.Fike – 1960)==
| |
| Let <math>A\in\mathbb{C}^{n,n}</math> be a [[diagonalizable|diagonalizable matrix]], and <math>V\in\mathbb{C}^{n,n}</math> be the non-singular [[eigenvector]] matrix such that <math>A=V\Lambda V^{-1}</math>. Moreover, let <math>\mu</math> be an eigenvalue of the matrix <math>A+\delta A</math>; then an eigenvalue <math>\lambda\in\sigma(A)</math> exists such that:
| |
| | |
| :<math>|\lambda-\mu|\leq\kappa_p (V)\|\delta A\|_p</math>
| |
| | |
| where <math>\kappa_p(V)=\|V\|_p\|V^{-1}\|_p</math> is the usual [[condition number]] in [[matrix norm|p-norm]].
| |
| | |
| ===Proof===
| |
| | |
| If <math>\mu\in\sigma(A)</math>, we can choose <math>\lambda=\mu</math> and the thesis is trivially verified (since <math>\kappa_p(V)\geq 1</math>).
| |
| | |
| So, be <math>\mu\notin\sigma(A)</math>. Then <math>\det(\Lambda-\mu I)\ \ne\ 0</math>. <math>\mu</math> being an eigenvalue of <math>A+\delta A</math>, we have <math>\det(A+\delta A-\mu I)=0</math> and so
| |
| | |
| :<math>0=\det(V^{-1})\det(A+\delta A-\mu I)\det(V)=\det(\Lambda+V^{-1}\delta AV-\mu I)</math>
| |
| :<math>=\det(\Lambda-\mu I)\det[(\Lambda-\mu I)^{-1}V^{-1}\delta AV +I]</math>
| |
| | |
| and, since <math>\det(\Lambda-\mu I)\ \ne\ 0</math> as stated above, we must have
| |
| | |
| :<math>\det[(\Lambda-\mu I)^{-1}V^{-1}\delta AV +I]=\ 0</math>
| |
| | |
| which reveals the value −1 to be an eigenvalue of the matrix <math>(\Lambda-\mu I)^{-1}V^{-1}\delta AV</math>.
| |
| | |
| For each [[matrix norm|consistent matrix norm]], we have <math>|\lambda|\leq\|A\|</math>, so, all ''p''-norms being consistent, we can write: | |
| | |
| :<math>1\leq\|(\Lambda-\mu I)^{-1}V^{-1}\delta AV\|_p\leq\|(\Lambda-\mu I)^{-1}\|_p\|V^{-1}\|_p\|V\|_p\|\delta A\|_p</math>
| |
| :<math>=\|(\Lambda-\mu I)^{-1}\|_p\ \kappa_p(V)\|\delta A\|_p</math>
| |
| | |
| But <math>(\Lambda-\mu I)^{-1}</math> being a diagonal matrix, the ''p''-norm is easily computed, and yields:
| |
| | |
| :<math>\|(\Lambda-\mu I)^{-1}\|_p\ =\max_{\|\mathbf{x}\|_p\ne 0} \frac{\|(\Lambda-\mu I)^{-1}\mathbf{x}\|_p}{\|\mathbf{x}\|_p}\ </math>
| |
| :<math>=\max_{\lambda\in\sigma(A)}\frac{1}{|\lambda -\mu|}\ =\ \frac{1}{\min_{\lambda\in\sigma(A)}|\lambda-\mu|}</math>
| |
| | |
| whence:
| |
| | |
| :<math>\min_{\lambda\in\sigma(A)}|\lambda-\mu|\leq\ \kappa_p(V)\|\delta A\|_p.\,</math>
| |
| | |
| The theorem can also be reformulated to better suit numerical methods.
| |
| In fact, dealing with real eigensystem problems, one often has an exact matrix <math>A</math>, but knows only an approximate eigenvalue-eigenvector couple, (<math>\tilde{\lambda}</math>,<math>\tilde{\mathbf{v}}</math>), and needs to bound the error. The following version comes in help.
| |
| | |
| ==Theorem ([[Friedrich L. Bauer]], C.T.Fike – 1960) (alternative statement)==
| |
| | |
| Let <math>A\in\mathbb{C}^{n,n}</math> be a [[diagonalizable|diagonalizable matrix]], and be <math>V\in\mathbb{C}^{n,n}</math> the non singular [[eigenvector]] matrix such as <math>A=V\Lambda V^{-1}</math>. Be moreover (<math>\tilde{\lambda}</math>,<math>\mathbf{\tilde{v}}</math>) an approximate eigenvalue-eigenvector couple, and <math>\mathbf{r}=A\mathbf{\tilde{v}}-\tilde{\lambda}\mathbf{\tilde{v}}</math>; then an eigenvalue <math>\lambda\in\sigma(A)</math> exists such that:
| |
| | |
| :<math>|\lambda-\tilde{\lambda}|\leq\kappa_p (V)\frac{\|\mathbf{r}\|_p}{\|\mathbf{\tilde{v}}\|_p}</math>
| |
| | |
| where <math>\kappa_p(V)=\|V\|_p\|V^{-1}\|_p</math> is the usual [[condition number]] in [[matrix norm|p-norm]].
| |
| | |
| ===Proof===
| |
| | |
| We solve this problem with Tarık's method:
| |
| m<math>\tilde{\lambda}\notin\sigma(A)</math> (otherwise, we can choose <math>\lambda=\tilde{\lambda}</math> and theorem is proven, since <math>\kappa_p(V)\geq 1</math>).
| |
| Then <math>(A-\tilde{\lambda} I)^{-1}</math> exists, so we can write:
| |
| | |
| :<math>\mathbf{\tilde{v}}=(A-\tilde{\lambda} I)^{-1}\mathbf{r}=V(D-\tilde{\lambda} I)^{-1}V^{-1}\mathbf{r}</math>
| |
| | |
| since <math>A</math> is diagonalizable; taking the p-norm of both sides, we obtain:
| |
| | |
| :<math>\|\mathbf{\tilde{v}}\|_p=\|V(D-\tilde{\lambda} I)^{-1}V^{-1}\mathbf{r}\|_p \leq \|V\|_p \|(D-\tilde{\lambda} I)^{-1}\|_p \|V^{-1}\|_p \|\mathbf{r}\|_p</math> | |
| <math>=\kappa_p(V)\|(D-\tilde{\lambda} I)^{-1}\|_p \|\mathbf{r}\|_p.
| |
| </math>
| |
| | |
| But, since <math>(D-\tilde{\lambda} I)^{-1}</math> is a diagonal matrix, the p-norm is easily computed, and yields:
| |
| | |
| :<math>\|(D-\tilde{\lambda} I)^{-1}\|_p=\max_{\|\mathbf{x}\|_p \ne 0}\frac{\|(D-\tilde{\lambda} I)^{-1}\mathbf{x}\|_p}{\|\mathbf{x}\|_p}</math>
| |
| :<math>=\max_{\lambda\in\sigma(A)} \frac{1}{|\lambda-\tilde{\lambda}|}=\frac{1}{\min_{\lambda\in\sigma(A)}|\lambda-\tilde{\lambda}|}</math>
| |
| | |
| whence:
| |
| | |
| :<math>\min_{\lambda\in\sigma(A)}|\lambda-\tilde{\lambda}|\leq\kappa_p(V)\frac{\|\mathbf{r}\|_p}{\|\mathbf{\tilde{v}}\|_p}.</math>
| |
| | |
| The Bauer–Fike theorem, in both versions, yields an absolute bound. The following corollary, which, besides all the hypothesis of Bauer–Fike theorem, requires also the non-singularity of A, turns out to be useful whenever a relative bound is needed.
| |
| | |
| == Corollary ==
| |
| Be <math>A\in\mathbb{C}^{n,n}</math> a non-singular, [[diagonalizable|diagonalizable matrix]], and be <math>V\in\mathbb{C}^{n,n}</math> the non singular [[eigenvector]] matrix such as <math>A=V\Lambda V^{-1}</math>. Be moreover <math>\mu</math> an eigenvalue of the matrix <math>A+\delta A</math>; then an eigenvalue <math>\lambda\in\sigma(A)</math> exists such that:
| |
| | |
| :<math>\frac{|\lambda-\mu|}{|\lambda|}\leq\kappa_p (V)\|A^{-1}\delta A\|_p</math> | |
| | |
| (Note: <math>\|A^{-1}\delta A\|</math>can be formally viewed as the "relative variation of A", just as <math>|\lambda-\mu||\lambda|^{-1}</math> is the relative variation of λ.)
| |
| | |
| === Proof ===
| |
| Since μ is an eigenvalue of (A+δA) and <math>det(A)\ne 0</math>, we have, left-multiplying by <math>-A^{-1}</math>:
| |
| | |
| :<math>-A^{-1}(A+\delta A)\mathbf{v}=-\mu A^{-1}\mathbf{v}</math>
| |
| | |
| that is, putting<math>\tilde{A}=\mu A^{-1}</math> and <math>\tilde{\delta A}=-A^{-1}\delta A</math>:
| |
| | |
| :<math>(\tilde{A}+\tilde{\delta A}-I)\mathbf{v}=\mathbf{0}</math>
| |
| | |
| which means that<math>\tilde{\mu}=1</math>is an eigenvalue of<math>(\tilde{A}+\tilde{\delta A})</math>, with <math>\mathbf{v}</math>eigenvector. Now, the eigenvalues of <math>\tilde{A}</math>are <math>\frac{\mu}{\lambda_i}</math>, while its eigenvector matrix is the same as A. Applying the Bauer–Fike theorem to the matrix<math>\tilde{A}+\tilde{\delta A}</math> and to its eigenvalue<math>\tilde{\mu}=1</math>, we obtain:
| |
| | |
| :<math>\min_{\lambda\in\sigma(A)}\left|\frac{\mu}{\lambda}-1\right|=\min_{\lambda\in\sigma(A)}\frac{|\lambda-\mu|}{|\lambda|}\leq\kappa_p (V)\|A^{-1}\delta A\|_p</math>
| |
| | |
| == Remark ==
| |
| | |
| If A is [[normal matrix|normal]], V is a [[unitary matrix]], and <math>\|V\|_2=\|V^{-1}\|_2=1</math>, so that <math>\kappa_2(V)=1</math>.
| |
| | |
| The Bauer–Fike theorem then becomes:
| |
| | |
| :<math>\exists\lambda\in\sigma(A): |\lambda-\mu|\leq\|\delta A\|_2</math>
| |
| | |
| :( <math>\exists\lambda\in\sigma(A): |\lambda-\tilde{\lambda}|\leq\frac{\|\mathbf{r}\|_2}{\|\mathbf{\tilde{v}}\|_2}</math> in the alternative formulation)
| |
| | |
| which obviously remains true if A is a [[Hermitian matrix]]. In this case, however, a much stronger result holds, known as the [[Weyl's inequality|Weyl's theorem on eigenvalues]].
| |
| | |
| == References ==
| |
| # F. L. Bauer and C. T. Fike. ''Norms and exclusion theorems''. Numer. Math. 2 (1960), 137–141.
| |
| # S. C. Eisenstat and I. C. F. Ipsen. ''Three absolute perturbation bounds for matrix eigenvalues imply relative bounds''. SIAM Journal on Matrix Analysis and Applications Vol. 20, N. 1 (1998), 149–158
| |
| | |
| {{DEFAULTSORT:Bauer-Fike theorem}}
| |
| [[Category:Spectral theory]]
| |
| [[Category:Theorems in analysis]]
| |
| [[Category:Articles containing proofs]]
| |