Dyck graph: Difference between revisions
en>David Eppstein →Dyck map: regular map |
en>Addbot m Bot: Migrating 2 interwiki links, now provided by Wikidata on d:q3115480 |
||
Line 1: | Line 1: | ||
In mathematics, a '''Neumann polynomial''', introduced by [[Carl Neumann]] for the special case <math>\alpha=0</math>, is a polynomial in 1/''z'' used to expand functions in term of [[Bessel function]]s.<ref>Abramowitz and Stegun, [http://www.math.sfu.ca/~cbm/aands/page_363.htm p. 363, 9.1.82] ff.</ref> | |||
The first few polynomials are | |||
:<math>O_0^{(\alpha)}(t)=\frac 1 t,</math> | |||
:<math>O_1^{(\alpha)}(t)=2\frac {\alpha+1}{t^2},</math> | |||
:<math>O_2^{(\alpha)}(t)=\frac {2+\alpha}{t}+ 4\frac {(2+\alpha)(1+\alpha)}{t^3},</math> | |||
:<math>O_3^{(\alpha)}(t)=2\frac {(1+\alpha)(3+\alpha)}{t^2}+ 8\frac {(1+\alpha)(2+\alpha)(3+\alpha)}{t^4},</math> | |||
:<math>O_4^{(\alpha)}(t)=\frac {(1+\alpha)(4+\alpha)}{2t}+ 4\frac {(1+\alpha)(2+\alpha)(4+\alpha)}{t^3}+ 16\frac {(1+\alpha)(2+\alpha)(3+\alpha)(4+\alpha)}{t^5}.</math> | |||
A general form for the polynomial is | |||
:<math>O_n^{(\alpha)}(t)= \frac{\alpha+n}{2\alpha} \sum_{k=0}^{\lfloor n/2\rfloor} (-1)^{n-k}\frac {(n-k)!} {k!} {-\alpha \choose n-k}\left(\frac 2 t \right)^{n+1-2k},</math> | |||
they have the generating function | |||
:<math>\frac{\left(\frac z 2 \right)^\alpha} {\Gamma(\alpha+1)} \frac 1 {t-z}= \sum_{n=0}O_n^{(\alpha)}(t) J_{\alpha+n}(z),</math> | |||
where ''J'' are [[Bessel function]]s. | |||
To expand a function ''f'' in form | |||
:<math>f(z)=\sum_{n=0} a_n J_{\alpha+n}(z)\,</math> | |||
for <math>|z|<c</math> | |||
compute | |||
:<math>a_n=\frac 1 {2 \pi i} \oint_{|z|=c'} \frac{\Gamma(\alpha+1)}{\left(\frac z 2\right)^\alpha}f(z) O_n^{(\alpha)}(z)\mathrm d z,</math> | |||
where <math>c'<c </math> and ''c'' is the distance of the nearest singularity of <math>z^{-\alpha} f(z)</math> from <math>z=0</math>. | |||
==Examples== | |||
An example is the extension | |||
:<math>\left(\tfrac{1}{2}z\right)^s= \Gamma(s)\cdot\sum_{k=0}(-1)^k J_{s+2k}(z)(s+2k){-s \choose k}</math> | |||
or the more general Sonine formula<ref>{{harvnb|Erdélyi|Magnus|Oberhettinger|Tricomi|1955}} II.7.10.1, p.64</ref> | |||
:<math>e^{i \gamma z}= \Gamma(s)\cdot\sum_{k=0}i^k C_k^{(s)}(\gamma)(s+k)\frac{J_{s+k}(z)}{\left(\frac z 2\right)^s}.</math> | |||
where <math>C_k^{(s)}</math> is [[Gegenbauer polynomial|Gegenbauer's polynomial]]. Then,{{fact|date=September 2011}}{{or|date=September 2011}} | |||
:<math>\frac{\left(\frac z 2\right)^{2k}}{(2k-1)!}J_s(z)= \sum_{i=k}(-1)^{i-k}{i+k-1\choose 2k-1}{i+k+s-1\choose 2k-1}(s+2i)J_{s+2i}(z),</math> | |||
:<math>\sum_{n=0} t^n J_{s+n}(z)= \frac{e^{\frac{t z}2}}{t^s} \sum_{j=0}\frac{\left(-\frac{z}{2t}\right)^j}{j!}\frac{\gamma \left(j+s,\frac{t z}{2}\right)}{\,\Gamma (j+s)}= \int_0^\infty e^{-\frac{z x^2}{2 t}}\frac {z x}{t} \frac{J_s(z\sqrt{1-x^2})}{\sqrt{1-x^2}^s}\,dx,</math> | |||
the [[confluent hypergeometric function]] | |||
:<math>M(a,s,z)= \Gamma (s) \sum_{k=0}^\infty \left(-\frac{1}{t}\right)^k L_k^{(-a-k)}(t) \frac{J_{s+k-1}\left(2 \sqrt{t z}\right)}{(\sqrt{t z})^{s-k-1}}</math> | |||
and in particular | |||
:<math>\frac{J_s(2 z)}{z^s}= \frac{4^s \Gamma\left(s+\frac12\right)}{\sqrt\pi}e^{2 i z}\sum_{k=0}L_k^{(-s-1/2-k)}\left(\frac{it}4\right)(4 i z)^k \frac{J_{2s+k}\left(2\sqrt{t z}\right)}{\sqrt{t z}^{2s+k}},</math> | |||
the index shift formula | |||
:<math>\Gamma(\nu-\mu) J_\nu(z)= \Gamma(\mu+1) \sum_{n=0}\frac{\Gamma(\nu-\mu+n)}{n!\Gamma(\nu+n+1)} \left(\frac z 2\right)^{\nu-\mu+n}J_{\mu+n}(z),</math> | |||
the Taylor expansion (addition formula) | |||
:<math>\frac{J_s\left(\sqrt{z^2-2uz}\right)}{\left(\sqrt{z^2-2uz}\right)^{\pm s}}= \sum_{k=0}\frac{(\pm u)^k}{k!}\frac{J_{s\pm k}(z)}{z^{\pm s}}</math> | |||
(cf.<ref> | |||
I.S. Gradshteyn (И.С. Градштейн), I.M. Ryzhik (И.М. Рыжи); Alan Jeffrey, Daniel Zwillinger, editors. ''Table of Integrals, Series, and Products'', seventh edition. Academic Press, 2007. ISBN 978-0-12-373637-6. Equation 8.515.1</ref>{{verification failed|date=September 2011}}<!--The referenced identity seems to be only superficially similar. It does not directly support the identity here.-->) and the expansion of the integral of the Bessel function | |||
:<math>\int J_s(z)dz= 2 \sum_{k=0} J_{s+2k+1}(z)</math> | |||
are of the same type. | |||
==See also== | |||
*[[Bessel function]] | |||
*[[Lommel polynomial]] | |||
*[[Hankel transform]] | |||
*[[Fourier–Bessel series]] | |||
== Notes == | |||
<references/> | |||
[[Category:Polynomials]] | |||
[[Category:Special functions]] |
Revision as of 05:32, 11 March 2013
In mathematics, a Neumann polynomial, introduced by Carl Neumann for the special case , is a polynomial in 1/z used to expand functions in term of Bessel functions.[1]
The first few polynomials are
A general form for the polynomial is
they have the generating function
where J are Bessel functions.
To expand a function f in form
where and c is the distance of the nearest singularity of from .
Examples
An example is the extension
or the more general Sonine formula[2]
where is Gegenbauer's polynomial. Then,Template:FactTemplate:Or
the confluent hypergeometric function
and in particular
the index shift formula
the Taylor expansion (addition formula)
(cf.[3]Template:Verification failed) and the expansion of the integral of the Bessel function
are of the same type.
See also
Notes
- ↑ Abramowitz and Stegun, p. 363, 9.1.82 ff.
- ↑ Template:Harvnb II.7.10.1, p.64
- ↑ I.S. Gradshteyn (И.С. Градштейн), I.M. Ryzhik (И.М. Рыжи); Alan Jeffrey, Daniel Zwillinger, editors. Table of Integrals, Series, and Products, seventh edition. Academic Press, 2007. ISBN 978-0-12-373637-6. Equation 8.515.1