Casimir pressure: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>AnomieBOT
m Dating maintenance tags: {{Who}} {{Cn}}
 
en>Mild Bill Hiccup
layout
 
Line 1: Line 1:
{{More footnotes|date=April 2009}}
Golda is what's written on my beginning certificate even though it is not the name on my birth certification. For a whilst I've been in Alaska but I will have to transfer in a year or two. The favorite hobby for him and his children is to perform lacross and he would never give it up. He is an info officer.<br><br>Also visit my webpage [http://www.Youronlinepublishers.com/authWiki/AdolphvhBladenqq online psychics]
In [[mathematics]], the '''discrete Poisson equation''' is the [[finite difference]] analog of the [[Poisson equation]]. In it, the [[discrete Laplace operator]] takes the place of the [[Laplace operator]]. The discrete Poisson equation is frequently used in [[numerical analysis]] as a stand-in for the continuous Poisson equation, although it is also studied in its own right as a topic in [[discrete mathematics]].
 
==On a two-dimensional rectangular grid==
Using the [[finite difference]] numerical method to discretize
the 2 dimensional Poisson equation (assuming a uniform spatial discretization, <math>\Delta x=\Delta y</math>) on an ''m''&nbsp;&times;&nbsp;''n'' grid gives the following formula:<ref>{{citation|title=Numerical Methods for Engineers and Scientists|edition=2nd|first=Joe|last=Hoffman|year=2001|chapter=Chapter 9.  Elliptic partial differential equations|publisher=McGraw&ndash;Hill|isbn=0-8247-0443-6}}.</ref>
 
:<math>
( {\nabla}^2 u )_{ij} = \frac{1}{\Delta x^2} (u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4 u_{ij}) = g_{ij}
</math>
 
where <math> 2 \le i \le m-1 </math> and <math> 2 \le j \le n-1 </math>.  The preferred arrangement of the solution vector is to use [[natural ordering]] which, prior to removing boundary elements, would look like:
 
:<math>
U =
\begin{bmatrix} u_{11} , u_{21} , \ldots , u_{m1} , u_{12} , u_{22} , \ldots , u_{m2} , \ldots , u_{mn}
\end{bmatrix}^T
</math>
 
This will result in an ''mn''&nbsp;&times;&nbsp;''mn'' linear system:
 
:<math> AU = b </math>
 
where
 
:<math>
A =
\begin{bmatrix}
        ~D & -I & ~0 & ~0 & ~0 & \ldots & ~0 \\
        -I & ~D & -I & ~0 & ~0 & \ldots & ~0 \\
        ~0 & -I & ~D & -I & ~0 & \ldots & ~0 \\
        \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
        ~0 & \ldots & ~0 & -I & ~D & -I & ~0 \\
        ~0 & \ldots & \ldots & ~0 & -I & ~D & -I \\
        ~0 & \ldots & \ldots & \ldots & ~0 & -I & ~D
\end{bmatrix},
</math>
 
<math> I </math> is the ''m''&nbsp;&times;&nbsp;''m'' [[identity matrix]], and <math> D </math>, also ''m''&nbsp;&times;&nbsp;''m'', is given by:
 
:<math>
D =
\begin{bmatrix}
        ~4 & -1 & ~0 & ~0 & ~0 & \ldots & ~0 \\
        -1 & ~4 & -1 & ~0 & ~0 & \ldots & ~0 \\
        ~0 & -1 & ~4 & -1 & ~0 & \ldots & ~0 \\
        \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
        ~0 & \ldots & ~0 & -1 & ~4 & -1 & ~0 \\
        ~0 & \ldots & \ldots & ~0 & -1 & ~4 & -1 \\
        ~0 & \ldots & \ldots & \ldots & ~0 & -1 & ~4
\end{bmatrix},
</math>
 
<ref>Golub, Gene H. and C. F. Van Loan, ''Matrix Computations, 3rd Ed.'',
The Johns Hopkins University Press, Baltimore, 1996, pages 177–180.</ref>
and <math>b</math> is defined by
 
:<math>
b =
-\Delta x^2\begin{bmatrix} g_{11} , g_{21} , \ldots , g_{m1} , g_{12} , g_{22} , \ldots , g_{m2} , \ldots , g_{mn}
\end{bmatrix}^T.
</math>
 
For each <math> u_{ij} </math> equation, the columns of <math> D </math> correspond to the <math> u </math> components:
 
:<math>
\begin{bmatrix}
        u_{1j} , & u_{2j} , & \ldots, & u_{i-1,j}  , & u_{ij} , & u_{i+1,j} , & \ldots , & u_{mj}
\end{bmatrix}^{T}
 
</math>
 
while the columns of <math> I </math> to the left and right of <math> D </math> correspond to the <math> u </math> components:
 
:<math>
\begin{bmatrix}
        u_{1,j-1} , & u_{2,j-1} , & \ldots, & u_{i-1,j-1}  , & u_{i,j-1} , & u_{i+1,j-1} , & \ldots , & u_{m,j-1}
\end{bmatrix}^{T}
</math>
 
and
 
:<math>
\begin{bmatrix}
        u_{1,j+1} , & u_{2,j+1} , & \ldots, & u_{i-1,j+1}  , & u_{i,j+1} , & u_{i+1,j+1} , & \ldots , & u_{m,j+1}
\end{bmatrix}^{T}
</math>
 
respectively.
 
From the above, it can be inferred that there are <math>n</math> block columns of <math> m </math> in <math> A </math>.  It is important to note that prescribed values of <math> u </math> (usually lying on the boundary) would have their corresponding elements removed from <math> I </math> and <math> D </math>.  For the common case that all the nodes on the boundary are set, we have <math> 2 \le i \le m - 1 </math> and <math> 2 \le j \le n - 1 </math>, and the system would have the dimensions (''m''&nbsp;&minus;&nbsp;2)(''n''&nbsp;&minus;&nbsp;2)&nbsp;&times;&nbsp;(''m''&nbsp;&minus;&nbsp;2)(''n''&nbsp;&minus;&nbsp;2), where <math> D </math> and <math> I </math> would have dimensions&nbsp;(''m''&nbsp;&minus;&nbsp;2)&nbsp;&times;&nbsp;(''m''&nbsp;&minus;&nbsp;2).
 
== Example ==
 
For a 5×5 ( <math> m = 5  </math> and <math> n = 5 </math> ) grid with all the boundary nodes prescribed,
the system would look like:
 
:<math>
\begin{bmatrix} U \end{bmatrix} =
\begin{bmatrix} u_{22}, u_{32}, u_{42}, u_{23}, u_{33}, u_{43}, u_{24}, u_{34}, u_{44}
\end{bmatrix}^{T}
</math>
 
with
 
:<math>
A =
\begin{bmatrix}
      ~4 & -1 & ~0 & -1 & ~0 & ~0 & ~0 & ~0 & ~0 \\
      -1 & ~4 & -1 & ~0 & -1 & ~0 & ~0 & ~0 & ~0 \\
      ~0 & -1 & ~4 & ~0 & ~0 & -1 & ~0 & ~0 & ~0 \\
      -1 & ~0 & ~0 & ~4 & -1 & ~0 & -1 & ~0 & ~0 \\
      ~0 & -1 & ~0 & -1 & ~4 & -1 & ~0 & -1 & ~0 \\
      ~0 & ~0 & -1 & ~0 & -1 & ~4 & ~0 & ~0 & -1 \\
      ~0 & ~0 & ~0 & -1 & ~0 & ~0 & ~4 & -1 & ~0 \\
      ~0 & ~0 & ~0 & ~0 & -1 & ~0 & -1 & ~4 & -1 \\
      ~0 & ~0 & ~0 & ~0 & ~0 & -1 & ~0 & -1 & ~4
\end{bmatrix}
</math>
 
and
 
:<math>
b =
\left[\begin{array}{l}
        -\Delta x^2 g_{22} + u_{12} + u_{21} \\
        -\Delta x^2 g_{32} + u_{31} ~~~~~~~~ \\
        -\Delta x^2 g_{42} + u_{52} + u_{41} \\
        -\Delta x^2 g_{23} + u_{13} ~~~~~~~~ \\
        -\Delta x^2 g_{33}  ~~~~~~~~~~~~~~~~ \\
        -\Delta x^2 g_{43} + u_{53} ~~~~~~~~ \\
        -\Delta x^2 g_{24} + u_{14} + u_{25} \\
        -\Delta x^2 g_{34} + u_{35} ~~~~~~~~ \\
        -\Delta x^2 g_{44} + u_{54} + u_{45}
\end{array}\right].
</math>
 
As can be seen, the boundary <math> u </math>'s are brought to the right-hand-side
of the equation.<ref>Cheny, Ward and David Kincaid, ''Numerical Mathematics and Computing 2nd Ed.'',
Brooks/Cole Publishing Company, Pacific Grove, 1985, pages 443–448.</ref>  The entire system is 9&nbsp;&times;&nbsp;9 while <math> D </math> and <math> I </math> are 3&nbsp;&times;&nbsp;3 and given by:
 
:<math>
D =
\begin{bmatrix}
      ~4 & -1 & ~0 \\
      -1 & ~4 & -1 \\
      ~0 & -1 & ~4 \\
\end{bmatrix}
</math>
 
and
 
:<math>
-I =
\begin{bmatrix}
      -1 & ~0 & ~0 \\
      ~0 & -1 & ~0 \\
      ~0 & ~0 & -1
\end{bmatrix}.
</math>
 
== Methods of solution ==
 
Because <math> \begin{bmatrix} A \end{bmatrix} </math> is block tridiagonal and sparse, many methods of solution
have been developed to optimally solve this linear system for <math> \begin{bmatrix} U \end{bmatrix} </math>.
Among the methods are a generalized [[Thomas algorithm]], [[cyclic reduction]], [[successive overrelaxation]], and [[Fourier transform]]s. A theoretically optimal <math> O(n) </math> solution can also be computed using [[multigrid methods]].
 
== Applications ==
 
In [[computational fluid dynamics]], for the solution of an incompressible flow problem, the incompressibility condition acts as a constraint for the pressure. There is no explicit form available for pressure in this case due to a strong coupling of the velocity and pressure fields. In this condition, by taking the divergence of all terms in the momentum equation, one obtains the pressure poisson equation.
 
For an incompressible flow this constraint is given by:
:<math>
\frac{ \partial v_x }{ \partial x} + \frac{ \partial v_y }{ \partial y} + \frac{\partial v_z}{\partial z} = 0
</math>
 
where <math> v_x </math> is the velocity in the <math> x </math> direction, <math> v_y </math> is
velocity in <math> y </math> and <math> v_z </math> is the velocity in the <math> z </math> direction. Taking divergence of the momentum equation and using the incompressibility constraint, the pressure poisson equation is formed given by:
:<math>
\nabla^2 p = f(\nu,V)
</math>
 
where <math> \nu </math> is the kinematic viscosity of the fluid and <math> V </math> is the velocity vector.<ref>
Fletcher, Clive A. J., ''Computational Techniques for Fluid Dynamics: Vol I'', 2nd Ed., Springer-Verlag, Berlin, 1991, page 334–339.
</ref>
 
The discrete Poisson's equation arises in the theory of
[[Markov chain]]s.    It appears as the relative value function for the dynamic programming equation in a  [[Markov decision process]], and  as the ''[[control variate]]'' for application in simulation variance reduction.<ref name=MCSS> S. P. Meyn and R.L. Tweedie, 2005.  [http://decision.csl.uiuc.edu/~meyn/pages/book.html Markov Chains and Stochastic Stability].
Second edition to appear, Cambridge University Press, 2009.</ref><ref name=CTCN> S. P. Meyn, 2007.  [http://decision.csl.uiuc.edu/~meyn/pages/CTCN/CTCN.html Control Techniques for Complex Networks], Cambridge University Press, 2007.  </ref><ref name=AG07> Asmussen, Søren, Glynn, Peter W., 2007. "Stochastic Simulation: Algorithms and Analysis".  Springer.  Series: Stochastic Modelling and Applied Probability, Vol. 57,  2007.</ref>
 
==Footnotes==
 
<references/>
 
==References==
*Hoffman, Joe D., '' Numerical Methods for Engineers and Scientists, 4th Ed.'', McGraw–Hill Inc., New York, 1992.
*Sweet, Roland A., '' SIAM Journal on Numerical Analysis, Vol. 11, No. 3 '', June 1974, 506–520.
*{{Cite book | last1=Press | first1=WH | last2=Teukolsky | first2=SA | last3=Vetterling | first3=WT | last4=Flannery | first4=BP | year=2007 | title=Numerical Recipes: The Art of Scientific Computing | edition=3rd | publisher=Cambridge University Press |  publication-place=New York | isbn=978-0-521-88068-8 | chapter=Section 20.4. Fourier and Cyclic Reduction Methods | chapter-url=http://apps.nrbook.com/empanel/index.html#pg=1053}}
 
 
[[Category:Finite differences]]
[[Category:Numerical differential equations]]

Latest revision as of 11:36, 10 March 2014

Golda is what's written on my beginning certificate even though it is not the name on my birth certification. For a whilst I've been in Alaska but I will have to transfer in a year or two. The favorite hobby for him and his children is to perform lacross and he would never give it up. He is an info officer.

Also visit my webpage online psychics