Physics of roller coasters: Difference between revisions
en>Materialscientist m Reverted edits by 202.171.167.157 (talk) to last version by Zrowny |
en>ClueBot NG m Reverting possible vandalism by Dmetiv8 to version by 184.146.163.89. False positive? Report it. Thanks, ClueBot NG. (1678340) (Bot) |
||
| Line 1: | Line 1: | ||
In [[mathematical physics]], '''higher-dimensional gamma matrices''' are the matrices which satisfy the [[Clifford algebra]] | |||
: <math> \{ \Gamma_a ~,~ \Gamma_b \} = 2 \eta_{a b} I_N </math> | |||
with the metric given by | |||
: <math> \eta = \parallel \eta_{a b} \parallel = \text{diag}(+1,-1, \dots, -1) | |||
</math> | |||
where <math> a,b = 0,1, \dots, d-1 </math> and <math> I_N </math> the identity matrix in <math> N= 2^{[d/2]} </math> dimensions. | |||
They have the following property under hermitian conjugation | |||
: <math> \Gamma_0^\dagger= +\Gamma_0 ~,~ \Gamma_i^\dagger= -\Gamma_i | |||
~(i=1,\dots,d-1) | |||
</math> | |||
== Charge conjugation == | |||
Since the groups generated by <math>\ \Gamma_a </math>, | |||
<math> -\Gamma_a^T </math>, | |||
<math> \Gamma_a^T </math> are the same we deduce from [[Schur's lemma]] | |||
that there must exist a [[matrix similarity|similarity transformation]] which connects them. | |||
This transformation is generated by the [[charge conjugation]] matrix. | |||
Explicitly we can introduce the following matrices | |||
: <math> C_{(+)} \Gamma_a C_{(+)}^{-1} = + \Gamma_a^T </math> | |||
: <math> C_{(-)} \Gamma_a C_{(-)}^{-1} = - \Gamma_a^T </math> | |||
They can be constructed as real matrices in various dimensions as the following table shows | |||
{| class="wikitable" | |||
|- | |||
! D | |||
! <math> C^*_{(+)}= C_{(+)} </math> | |||
! <math> C^*_{(-)}= C_{(-)} </math> | |||
|- | |||
| <math> 2 </math> | |||
| <math> C^T_{(+)}=C_{(+)};~~~C^2_{(+)}=1 </math> | |||
| <math> C^T_{(-)}=-C_{(-)};~~~C^2_{(-)}=-1 </math> | |||
|- | |||
| <math> 3 </math> | |||
| | |||
| <math> C^T_{(-)}=-C_{(-)};~~~C^2_{(-)}=-1 </math> | |||
|- | |||
| <math> 4 </math> | |||
| <math> C^T_{(+)}=-C_{(+)};~~~C^2_{(+)}=-1 </math> | |||
| <math> C^T_{(-)}=-C_{(-)};~~~C^2_{(-)}=-1 </math> | |||
|- | |||
| <math> 5 </math> | |||
| <math> C^T_{(+)}=-C_{(+)};~~~C^2_{(+)}=-1 </math> | |||
| | |||
|- | |||
| <math> 6 </math> | |||
| <math> C^T_{(+)}=-C_{(+)};~~~C^2_{(+)}=-1 </math> | |||
| <math> C^T_{(-)}=C_{(-)};~~~C^2_{(-)}=1 </math> | |||
|- | |||
| <math> 7 </math> | |||
| | |||
| <math> C^T_{(-)}=C_{(-)};~~~C^2_{(-)}=1 </math> | |||
|- | |||
| <math> 8 </math> | |||
| <math> C^T_{(+)}=C_{(+)};~~~C^2_{(+)}=1 </math> | |||
| <math> C^T_{(-)}=C_{(-)};~~~C^2_{(-)}=1 </math> | |||
|- | |||
| <math> 9 </math> | |||
| <math> C^T_{(+)}=C_{(+)};~~~C^2_{(+)}=1 </math> | |||
| | |||
|- | |||
| <math> 10 </math> | |||
| <math> C^T_{(+)}=C_{(+)};~~~C^2_{(+)}=1 </math> | |||
| <math> C^T_{(-)}=-C_{(-)};~~~C^2_{(-)}=-1 </math> | |||
|- | |||
| <math> 11 </math> | |||
| | |||
| <math> C^T_{(-)}=C_{(-)};~~~C^2_{(-)}=-1 </math> | |||
|} | |||
== Symmetry properties == | |||
A <math> \Gamma </math> matrix is called symmetric if | |||
: <math> ( C \Gamma_{a_1 \dots a_n} )^T = + ( C \Gamma_{a_1 \dots a_n} ) </math> | |||
otherwise it is called antisymmetric. | |||
In the previous expression <math> C </math> can be either <math> C_{(+)} </math> | |||
or <math> C_{(-)} </math>. In odd dimension there is not ambiguity but | |||
in even dimension it is better to choose whichever one of <math> C_{(+)} </math> | |||
or <math> C_{(-)} </math> which allows | |||
for Majorana spinors. In <math> D=6 </math> there is not such | |||
criterion and therefore we consider both. | |||
{| class="wikitable" | |||
|- | |||
! D | |||
! C | |||
! Symmetric | |||
! Antisymmetric | |||
|- | |||
| <math> 3 </math> | |||
| <math> C_{(-)} </math> | |||
| <math> \gamma_{a} </math> | |||
| <math> I_2 </math> | |||
|- | |||
| <math> 4 </math> | |||
| <math> C_{(-)} </math> | |||
| <math> \gamma_{a} ~,~ \gamma_{a_1 a_2} </math> | |||
| <math> I_4 ~,~ \gamma_\text{chir} ~,~ \gamma_\text{chir} \gamma_a </math> | |||
|- | |||
| <math> 5 </math> | |||
| <math> C_{(+)} </math> | |||
| <math> \Gamma_{a_1 a_2} </math> | |||
| <math> I_4 ~,~ \Gamma_a </math> | |||
|- | |||
| <math> 6 </math> | |||
| <math> C_{(-)} </math> | |||
| <math> I_8 ~,~ \Gamma_\text{chir} \Gamma_{a_1 a_2} ~,~ \Gamma_{a_1 a_2 a_3} </math> | |||
| <math> \Gamma_a ~,~ \Gamma_\text{chir}~,~ \Gamma_\text{chir} \Gamma_a ~,~ \Gamma_{a_1 a_2}</math> | |||
|- | |||
| <math> 7 </math> | |||
| <math> C_{(-)} </math> | |||
| <math> I_8 ~,~ \Gamma_{a_1 a_2 a_3} </math> | |||
| <math> \Gamma_a ~,~ \Gamma_{a_1 a_2}</math> | |||
|- | |||
| <math> 8 </math> | |||
| <math> C_{(+)} </math> | |||
| <math> I_{16} ~,~ \Gamma_{a} ~,~ \Gamma_\text{chir} ~,~ \Gamma_\text{chir}\Gamma_{a_1 a_2 a_3} ~,~ \Gamma_{a_1 \dots a_4} </math> | |||
| <math> \Gamma_\text{chir} \Gamma_a ~,~ \Gamma_{a_1 a_2} ~,~ \Gamma_\text{chir} \Gamma_{a_1 a_2} ~,~ \Gamma_{a_1 a_2 a_3} </math> | |||
|- | |||
| <math> 9 </math> | |||
| <math> C_{(+)} </math> | |||
| <math> I_{16} ~,~ \Gamma_{a} ~,~ \Gamma_{a_1 \dots a_4} ~,~ \Gamma_{a_1 \dots a_5} </math> | |||
| <math> \Gamma_{a_1 a_2} ~,~ \Gamma_{a_1 a_2 a_3}</math> | |||
|- | |||
| <math> 10 </math> | |||
| <math> C_{(-)} </math> | |||
| <math> \Gamma_{a} ~,~ \Gamma_\text{chir} ~,~ \Gamma_\text{chir} \Gamma_a ~,~ \Gamma_{a_1 a_2} | |||
~,~ \Gamma_\text{chir} \Gamma_{a_1 \dots a_4} ~,~ \Gamma_{a_1 \dots a_5}</math> | |||
| <math> I_{32} ~,~ \Gamma_\text{chir} \Gamma_{a_1 a_2} ~,~ \Gamma_{a_1 a_2 a_3} | |||
~,~ \Gamma_{a_1 \dots a_4} ~,~ \Gamma_\text{chir} \Gamma_{a_1 a_2 a_3} </math> | |||
|- | |||
| <math> 11 </math> | |||
| <math> C_{(-)} </math> | |||
| <math> \Gamma_a ~,~ \Gamma_{a_1 a_2} ~,~ \Gamma_{a_1 \dots a_5} </math> | |||
| <math> I_{32} ~,~ \Gamma_{a_1 a_2 a_3} ~,~ \Gamma_{a_1 \dots a_4}</math> | |||
|} | |||
== Example of an explicit construction in chiral base == | |||
We construct the <math> \Gamma </math> matrices in a recursive way, first in all even dimensions and then in odd ones. | |||
=== ''d'' = 2 === | |||
We take | |||
: <math> \gamma_0= \sigma_1 ~,~ \gamma_1= -i \sigma_2 </math> | |||
and we can easily check that the charge conjugation matrices are | |||
: <math> C_{(+)}= \sigma_1 = C_{(+)}^* = s_{(2,+)} C_{(+)}^T = s_{(2,+)} C_{(+)}^{-1} ~~~~ s_{(2,+)}=+1 </math> | |||
: <math> C_{(-)}= i \sigma_2 = C_{(-)}^* = s_{(2,-)} C_{(-)}^T = s_{(2,-)} C_{(-)}^{-1} ~~~~ s_{(2,-)}=-1 </math> | |||
We can also define the hermitian chiral <math> \gamma_\text{chir} </math> to be | |||
: <math> \gamma_\text{chir}= \gamma_0 \gamma_1 = \sigma_3 = \gamma_\text{chir}^\dagger </math> | |||
=== generic even ''d'' = 2''k'' === | |||
We now construct the <math> \Gamma_a </math> ( <math> a=0,\dots d+1 </math>) matrices and the charge conjugations <math> C_{(\pm)} </math> in <math> d+2 </math> dimensions starting from the <math> \gamma_{a'} </math> (<math> a'=0, \dots, d-1 </math>) and <math> c_{(\pm)} </math> matrices in <math> d </math> dimensions. | |||
Explicitly we have | |||
: <math> \Gamma_{a'} = \gamma_{a'} \otimes \sigma_3 ~(a'=0, \dots, d-1) ~~,~~ \Gamma_{d} = I \otimes (i \sigma_1),~~ \Gamma_{d+1}= I \otimes (i \sigma_2) </math> | |||
Then we can construct the charge conjugation matrices | |||
: <math> C_{(+)} = c_{(-)} \otimes \sigma_1 ~~~~,~~~~ C_{(-)} = c_{(+)} \otimes (i \sigma_2) </math> | |||
with the following properties | |||
: <math> C_{(+)}= C_{(+)}^* = s_{(d+2,+)} C_{(+)}^T = s_{(d+2,+)} C_{(+)}^{-1} ~~~~ s_{(d+2,+)}= s_{(d,-)} </math> | |||
: <math> C_{(-)}= C_{(-)}^* = s_{(d+2,-)} C_{(-)}^T = s_{(d+2,-)} C_{(-)}^{-1} ~~~~ s_{(d+2,-)}=-s_{(d,+)} </math> | |||
Starting from the values for <math>d=2</math>, <math> s_{(2,+)}=+1,~~~ s_{(2,-)}=-1</math> we can compute all the signs <math>s_{(d,\pm)} </math> which have a periodicity of 8, explicitly we find | |||
{| class="wikitable" | |||
|- | |||
! | |||
! <math> d=8 k </math> | |||
! <math> d=8 k+2 </math> | |||
! <math> d=8 k+4 </math> | |||
! <math> d=8 k+6 </math> | |||
|- | |||
| <math> s_{(d,+)} </math> | |||
| +1 | |||
| +1 | |||
| −1 | |||
| −1 | |||
|- | |||
| <math> s_{(d,-)} </math> | |||
| +1 | |||
| −1 | |||
| −1 | |||
| +1 | |||
|} | |||
Again we can define the hermitian chiral matrix in <math>d+2</math> dimensions as | |||
: <math> \Gamma_\text{chir}= \alpha_{d+2} \Gamma_0 \Gamma_1 \dots \Gamma_{d-1} = \gamma_\text{chir} \otimes \sigma_3 | |||
~~~~ \alpha_d= i^{d/2-1}</math> | |||
which is diagonal by construction and transforms under charge conjugation as | |||
: <math> C_{(\pm)} \Gamma_\text{chir} C_{(\pm)}^{-1} = \beta_{d+2} \Gamma_\text{chir}^T | |||
~~~~ \beta_d= (-)^{d(d-1)/2} </math> | |||
=== generic odd ''d'' = 2''k'' + 1 === | |||
We consider the previous construction for <math> d-1 </math> (which is even) and then we simply take all <math> \Gamma_{a} </math> (<math> a=0, \dots, d-2 </math>) matrices to which we add <math> \Gamma_{d-1}= i \Gamma_\text{chir} </math> ( the <math> i </math> is there in order to have an antihermitian matrix). | |||
Finally we can compute the charge conjugation matrix: we have to choose between <math> C_{(+)} </math> and <math> C_{(-)} </math> in such a way that <math> \Gamma_{d-1} </math> transforms as all the others <math> \Gamma </math> matrices. Explicitly we require | |||
: <math> C_{(s)} \Gamma_\text{chir} C_{(s)}^{-1} = \beta_{d} \Gamma_\text{chir}^T = s \Gamma_\text{chir}^T </math> | |||
[[Category:Quantum field theory]] | |||
[[Category:Spinors]] | |||
[[Category:Matrices]] | |||
[[Category:Clifford algebras]] | |||
Revision as of 14:33, 31 January 2014
In mathematical physics, higher-dimensional gamma matrices are the matrices which satisfy the Clifford algebra
with the metric given by
where and the identity matrix in dimensions.
They have the following property under hermitian conjugation
Charge conjugation
Since the groups generated by , , are the same we deduce from Schur's lemma that there must exist a similarity transformation which connects them. This transformation is generated by the charge conjugation matrix. Explicitly we can introduce the following matrices
They can be constructed as real matrices in various dimensions as the following table shows
| D | ||
|---|---|---|
Symmetry properties
A matrix is called symmetric if
otherwise it is called antisymmetric. In the previous expression can be either or . In odd dimension there is not ambiguity but in even dimension it is better to choose whichever one of or which allows for Majorana spinors. In there is not such criterion and therefore we consider both.
| D | C | Symmetric | Antisymmetric |
|---|---|---|---|
Example of an explicit construction in chiral base
We construct the matrices in a recursive way, first in all even dimensions and then in odd ones.
d = 2
We take
and we can easily check that the charge conjugation matrices are
We can also define the hermitian chiral to be
generic even d = 2k
We now construct the ( ) matrices and the charge conjugations in dimensions starting from the () and matrices in dimensions. Explicitly we have
Then we can construct the charge conjugation matrices
with the following properties
Starting from the values for , we can compute all the signs which have a periodicity of 8, explicitly we find
| +1 | +1 | −1 | −1 | |
| +1 | −1 | −1 | +1 |
Again we can define the hermitian chiral matrix in dimensions as
which is diagonal by construction and transforms under charge conjugation as
generic odd d = 2k + 1
We consider the previous construction for (which is even) and then we simply take all () matrices to which we add ( the is there in order to have an antihermitian matrix).
Finally we can compute the charge conjugation matrix: we have to choose between and in such a way that transforms as all the others matrices. Explicitly we require