Hilal-i-Jur'at: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Smsarmad
en>Magioladitis
m →‎Appearance: fixed unbalanced tags + other fixes using AWB (9958)
Line 1: Line 1:
{{DISPLAYTITLE:''q''-gamma function}}
Greetings! I am Marvella and I feel comfy when individuals use the complete title. In her expert life she is a payroll clerk but she's always needed her personal business. To collect cash is 1 of the issues I love most. California is our beginning location.<br><br>Take a look at my homepage ... std testing at home ([http://www.pponline.co.uk/user/miriamlinswkucrd just click the up coming web site])
In [[q-analog]] theory, the '''q-gamma function''', or '''basic gamma function''', is a generalization of the  ordinary [[Gamma function]] closely related to the [[double gamma function]]. It was introduced by {{harvtxt|Jackson|1905}}.  It is given by
 
:<math>\Gamma_q(x) = (1-q)^{1-x}\prod_{n=0}^\infty
\frac{1-q^{n+1}}{1-q^{n+x}}=(1-q)^{1-x}\,\frac{(q;q)_\infty}{(q^x;q)_\infty}
</math>
when |q|<1, and
: <math> \Gamma_q(x)=\frac{(q^{-1};q^{-1})_\infty}{(q^{-x};q^{-1})_\infty}(q-1)^{1-x}q^{\binom{x}{2}} </math>
if |q|>1. Here (&middot;;&middot;)<sub>&infin;</sub> is the infinite [[q-Pochhammer symbol]]. It satisfies the functional equation
:<math>\Gamma_q(x+1) = \frac{1-q^{x}}{1-q}\Gamma_q(x)=[x]_q\Gamma_q(x)
</math>
 
For non-negative integers ''n'',
:<math>\Gamma_q(n)=[n-1]_q!</math>
 
where [&middot;]<sub>''q''</sub>! is the [[q-factorial]] function. Alternatively, this can be taken as an extension of the q-factorial function to the real number system.
 
The relation to the ordinary gamma function is made explicit in the limit
:<math>\lim_{q \to 1\pm} \Gamma_q(x) = \Gamma(x).</math>
 
A q-analogue of [[Stirling's formula]] for |q|<1 is given by
 
:<math>  \Gamma_q(x) =[2]_{q^{\ }}^{\frac 12} \Gamma_{q^2}\left(\frac 12\right)(1-q)^{\frac 12-x}e^{\frac{\theta q^x}{1-q-q^x}}, \quad 0<\theta<1.</math>
 
A q-analogue of the [[multiplication formula]] for |q|<1 is given by
 
:<math>  \Gamma_{q^n}\left(\frac {x}n\right)\Gamma_{q^n}\left(\frac {x+1}n\right)\cdots\Gamma_{q^n}\left(\frac {x+n-1}n\right) =[n]_q^{\frac 12-x}\left([2]_q \Gamma^2_{q^2}\left(\frac12\right)\right)^{\frac{n-1}{2}}\Gamma_q(x).</math>
 
Due to I. Mező, the q-analogue of the [[Gamma_function#Raabe.27s_formula|Raabe formula]] exists, at least if we use the q-gamma function when |q|>1. With this restriction
: <math> \int_0^1\log\Gamma_q(x)dx=\frac{\zeta(2)}{\log q}+\log\sqrt{\frac{q-1}{\sqrt[6]{q}}}+\log(q^{-1};q^{-1})_\infty \quad(q>1). </math>
 
==References==
*{{Citation | last1=Jackson | first1=F. H. | title=The Basic Gamma-Function and the Elliptic Functions | jstor=92601 | publisher=The Royal Society | year=1905 | journal=Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character | issn=0950-1207 | volume=76 | issue=508 | pages=127–144}}
*{{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=[[Cambridge University Press]] | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719  | year=2004 | volume=96}}
*{{Citation | last1=Mansour | first1=M|  title=An asymptotic expansion of the q-gamma function  Γq(x)| journal=Journal of Nonlinear Mathematical Physics |  volume=13 | number=4 | year=2006 | pages=479–483}}[http://staff.www.ltu.se/~norbert/home_journal/electronic/134lett2.pdf]
*{{Citation | last1=Mező | first1=István | title=A q-Raabe formula and an integral of the fourth Jacobi theta function | year=2012 | journal=Journal of Number Theory | volume=130 | issue=2 | pages=360-369}}
[[Category:Gamma and related functions]]
[[Category:Q-analogs]]
 
 
{{mathanalysis-stub}}

Revision as of 01:02, 1 March 2014

Greetings! I am Marvella and I feel comfy when individuals use the complete title. In her expert life she is a payroll clerk but she's always needed her personal business. To collect cash is 1 of the issues I love most. California is our beginning location.

Take a look at my homepage ... std testing at home (just click the up coming web site)