Lifting-line theory: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Ggv31
m math formatting
en>Flyer22
m Reverted 2 edits by Yamaholic identified as test/vandalism using STiki
 
Line 1: Line 1:
In [[mathematics]], a '''graph product''' is a [[binary operation]] on [[graph (mathematics)|graph]]s. Specifically, it is an operation that takes two graphs ''G''<sub>1</sub> and ''G''<sub>2</sub> and produces a graph ''H'' with the following properties:
Hi there, I am Andrew Berryhill. Office supervising is my profession. For years he's been living in Mississippi and he doesn't strategy on changing it. To climb is something I truly enjoy doing.<br><br>my web site [http://brazil.amor-amore.com/irboothe cheap psychic readings]
* The [[vertex (graph theory)|vertex set]] of ''H'' is the [[Cartesian product]] ''V''(''G''<sub>1</sub>)&nbsp;&times;&nbsp;''V''(''G''<sub>2</sub>), where ''V''(''G''<sub>1</sub>) and ''V''(''G''<sub>2</sub>) are the vertex sets of ''G''<sub>1</sub> and ''G''<sub>2</sub>, respectively.
* Two vertices (''u''<sub>1</sub>,&nbsp;''u''<sub>2</sub>) and (''v''<sub>1</sub>,&nbsp;''v''<sub>2</sub>) of ''H'' are connected by an [[edge (graph theory)|edge]] if and only if the vertices ''u''<sub>1</sub>, ''u''<sub>2</sub>, ''v''<sub>1</sub>, ''v''<sub>2</sub> satisfy conditions of a certain type (see below).
 
The following table shows the most common graph products, with &sim; denoting &ldquo;is connected by an edge to&rdquo;, and <math>\not\sim</math> denoting non-connection:
{| class="wikitable" style="text-align:center"
|-
! Name
! Condition for (''u''<sub>1</sub>,&nbsp;''u''<sub>2</sub>)&nbsp;&sim;&nbsp;(''v''<sub>1</sub>,&nbsp;''v''<sub>2</sub>).
! Dimensions
! Example
|-
| [[Cartesian product of graphs|Cartesian product]]
| (&nbsp;''u''<sub>1</sub>&nbsp;=&nbsp;''v''<sub>1</sub>&nbsp;and&nbsp;''u''<sub>2</sub>&nbsp;&sim;&nbsp;''v''<sub>2</sub>&nbsp;)<br/>or<br/>
(&nbsp;''u''<sub>1</sub>&nbsp;&sim;&nbsp;''v''<sub>1</sub>&nbsp;and&nbsp;''u''<sub>2</sub>&nbsp;=&nbsp;''v''<sub>2</sub>&nbsp;)
| <math>G_{V_1, E_1} \square H_{V_2, E_2} \rightarrow J_{(V_1 V_2), (E_2 V_1 + E_1 V_2)}</math>
| [[Image:Graph-Cartesian-product.svg|200px]]
|-
| [[Tensor product of graphs|Tensor product]]<br/>(Categorical product)
| ''u''<sub>1</sub>&nbsp;&sim;&nbsp;''v''<sub>1</sub>&nbsp; and &nbsp;''u''<sub>2</sub>&nbsp;&sim;&nbsp;''v''<sub>2</sub>
| <math>G_{V_1, E_1} \times H_{V_2, E_2} \rightarrow J_{(V_1 V_2), (2 E_1 E_2)}</math>
| [[Image:Graph-tensor-product.svg|200px]]
|-
| [[Lexicographical product of graphs|Lexicographical product]]
| ''u''<sub>1</sub>&nbsp;&sim;&nbsp;''v''<sub>1</sub><br/> or <br/>(&nbsp;''u''<sub>1</sub>&nbsp;=&nbsp;''v''<sub>1</sub> and ''u''<sub>2</sub>&nbsp;&sim;&nbsp;''v''<sub>2</sub>&nbsp;)
| <math>G_{V_1, E_1} \cdot H_{V_2, E_2} \rightarrow J_{(V_1 V_2), (E_2 V_1 + E_1 V_2^2)}</math>
| [[Image:Graph-lexicographic-product.svg|200px]]
|-
| [[Strong product of graphs|Strong product]]<br/>(Normal product, AND product)
| (&nbsp;''u''<sub>1</sub>&nbsp;=&nbsp;''v''<sub>1</sub>&nbsp;and&nbsp;''u''<sub>2</sub>&nbsp;&sim;&nbsp;''v''<sub>2</sub>&nbsp;)<br/>or<br/>(&nbsp;''u''<sub>1</sub>&nbsp;&sim;&nbsp;''v''<sub>1</sub>&nbsp;and&nbsp;''u''<sub>2</sub>&nbsp;=&nbsp;''v''<sub>2</sub>&nbsp;)<br/>or<br/>(&nbsp;''u''<sub>1</sub>&nbsp;&sim;&nbsp;''v''<sub>1</sub>&nbsp;and&nbsp;''u''<sub>2</sub>&nbsp;&sim;&nbsp;''v''<sub>2</sub>&nbsp;)
| <math>G_{V_1, E_1}  \boxtimes H_{V_2, E_2} \rightarrow J_{(V_1 V_2), (V_1 E_2 + V_2E_1 + 2 E_1 E_2)}</math>
|
|-
| [[Co-normal product of graphs|Co-normal product]]<br/>(disjunctive product, OR product)
| ''u''<sub>1</sub>&nbsp;&sim;&nbsp;''v''<sub>1</sub><br/>or<br/>''u''<sub>2</sub>&nbsp;&sim;&nbsp;''v''<sub>2</sub>
|
|
|-
| [[Modular product of graphs|Modular product]]
| <math>(u_1 \sim v_1 \text{ and } u_2 \sim v_2)</math><br/>or</br/>
<math>(u_1 \not\sim v_1 \text{ and } u_2 \not\sim v_2)</math>
|
|
|-
| [[Rooted product of graphs|Rooted product]]
| see article
| <math>G_{V_1, E_1} \cdot H_{V_2, E_2} \rightarrow J_{(V_1 V_2), (E_2 V_1 + E_1)}</math>
| [[Image:Graph-rooted-product.svg|200px]]
|-
| [[Kronecker product]]
| see article
| see article
| see article
|-
| [[Zig-zag product]]
| see article
| see article
| see article
|}
 
In general, a graph product is determined by any condition for (''u''<sub>1</sub>,&nbsp;''u''<sub>2</sub>)&nbsp;&sim;&nbsp;(''v''<sub>1</sub>,&nbsp;''v''<sub>2</sub>) that can be expressed in terms of the statements ''u''<sub>1</sub>&nbsp;&sim;&nbsp;''v''<sub>1</sub>, ''u''<sub>2</sub>&nbsp;&sim;&nbsp;''v''<sub>2</sub>, ''u''<sub>1</sub>&nbsp;=&nbsp;''v''<sub>1</sub>, and ''u''<sub>2</sub>&nbsp;=&nbsp;''v''<sub>2</sub>.
 
==See also==
* [[Graph operations]]
 
==References==
 
*{{citation
  | last1 = Imrich | first1 = Wilfried
  | last2 = Klavžar | first2 = Sandi
  | title = Product Graphs: Structure and Recognition
  | publisher = Wiley
  | year = 2000
  | id = ISBN 0-471-37039-8}}.
 
{{combin-stub}}
 
[[Category:Graph products]]
[[Category:Graph operations]]
[[Category:Binary operations]]

Latest revision as of 09:04, 4 June 2014

Hi there, I am Andrew Berryhill. Office supervising is my profession. For years he's been living in Mississippi and he doesn't strategy on changing it. To climb is something I truly enjoy doing.

my web site cheap psychic readings