Diagonal matrix: Difference between revisions
en>Rgdboer m →Uses: update link |
en>ClueBot NG m Reverting possible vandalism by 111.69.198.186 to version by 217.28.15.192. False positive? Report it. Thanks, ClueBot NG. (1617573) (Bot) |
||
Line 1: | Line 1: | ||
{{infobox | |||
| above = Bohr radius | |||
| label1 = Symbol: | |||
| data1 = ''a''<sub>0</sub> | |||
| label2 = Named after: | |||
| data2 = [[Niels Bohr]] | |||
| label3 = Value in [[meter]]s: | |||
| data3 = ≈ 5.29{{e|-11}}[[meter|m]] | |||
| label4 = Value in [[picometer]]s: | |||
| data4 = ≈ 52.9 [[meter|pm]] | |||
| label5 = Value in [[angstrom]]s: | |||
| data5 = ≈ 0.529 [[angstrom|Å]] | |||
}} | |||
The '''Bohr radius''' is a [[physical constant]], approximately equal to the most probable distance between the [[proton]] and [[electron]] in a [[hydrogen atom]] in its [[ground state]]. It is named after [[Niels Bohr]], due to its role in the [[Bohr model]] of an atom. The precise definition of the Bohr radius is:<ref>[[David J. Griffiths]], ''Introduction to Quantum Mechanics'', Prentice-Hall, 1995, p. 137. ISBN 0-13-124405-1</ref> | |||
:<math>a_0 = \frac{4 \pi \varepsilon_0 \hbar^2}{m_{\mathrm{e}} e^2} = \frac{\hbar}{m_{\mathrm{e}}\,c\,\alpha}</math> | |||
where: | |||
:<math> \varepsilon_0 \ </math> is the [[permittivity of free space]] | |||
:<math> \hbar \ </math> is the [[reduced Planck's constant]] | |||
:<math> m_{\mathrm{e}} \ </math> is the [[mass of electron|electron rest mass]] | |||
:<math> e \ </math> is the [[elementary charge]] | |||
:<math> c \ </math> is the [[speed of light]] in vacuum | |||
:<math> \alpha \ </math> is the [[fine structure constant]]. | |||
Or, in [[Gaussian units]] the Bohr radius is simply | |||
:<math>a_0=\frac{\hbar^2}{m_e e^2}</math> | |||
According to 2010 [[CODATA]] the Bohr radius has a value of 5.2917721092(17){{e|−11}} m (i.e., approximately 53 [[1 E-12 m|pm]] or 0.53 [[angstrom]]s).<ref>{{cite web |url=http://physics.nist.gov/cgi-bin/cuu/Value?bohrrada0 |title=CODATA Value: Bohr radius |author= |work=Fundamental Physical Constants |publisher=[[National Institute of Standards and Technology|NIST]] |accessdate=3 July 2011}}</ref><ref>The number in parenthesis (36) denotes the [[standard deviation|uncertainty]] of the last digits.</ref> | |||
In the [[Bohr model]] of the structure of an [[atom]], put forward by [[Niels Bohr]] in 1913, [[electrons]] orbit a central [[atomic nucleus|nucleus]]. The model says that the electrons orbit only at certain distances from the nucleus, depending on their energy. In the simplest atom, [[hydrogen]], a single electron orbits the nucleus and its smallest possible orbit, with lowest energy, has an orbital radius almost equal to the Bohr radius. (It is not ''exactly'' the Bohr radius due to the [[reduced mass|reduced mass effect]]. They differ by about 0.1%.) | |||
Although the Bohr model is no longer in use, the Bohr radius remains very useful in [[atomic physics]] calculations, due in part to its simple relationship with other fundamental constants. (This is why it is defined using the true electron mass rather than the reduced mass, as mentioned above.) For example, it is the unit of length in [[atomic units]]. | |||
According to the modern, [[quantum mechanics|quantum-mechanical]] understanding of the hydrogen atom, the average distance −its [[expectation value (quantum mechanics)|expectation value]]− between electron and proton is ≈1.5a<sub>0</sub>,<ref>[http://books.google.com/books?id=Yfo3rnt3bkEC&pg=PA234 Modern physics, by Serway, Moses, Moyer, Example 8.9, p284] The value 1.5a<sub>0</sub> is approximate, not exact, because it neglects [[reduced mass]], [[fine structure]] effects (such as relativistic corrections), and other such small effects.</ref> somewhat different than the value in the Bohr model (≈''a''<sub>0</sub>), but certainly the same [[order of magnitude]]. | |||
The Bohr radius of the electron is one of a trio of related units of length, the other two being the [[Compton wavelength]] of the electron <math> \lambda_{\mathrm{e}} \ </math> and the [[classical electron radius]] <math> r_{\mathrm{e}} \ </math>. The Bohr radius is built from the [[electron mass]] <math>m_{\mathrm{e}}</math>, [[Planck's constant]] <math> \hbar \ </math> and the [[electron charge]] <math> e \ </math>. The Compton wavelength is built from <math> m_{\mathrm{e}} \ </math>, <math> \hbar \ </math> and the speed of light <math> c \ </math>. The classical electron radius is built from <math> m_{\mathrm{e}} \ </math>, <math> c \ </math> and <math> e \ </math>. Any one of these three lengths can be written in terms of any other using the fine structure constant <math> \alpha \ </math>: | |||
:<math>r_{\mathrm{e}} = \frac{\alpha \lambda_{\mathrm{e}}}{2\pi} = \alpha^2 a_0.</math> | |||
The Compton wavelength is about 20 times smaller than the Bohr radius, and the classical electron radius is about 1000 times smaller than the Compton wavelength. | |||
==Reduced Bohr radius== | |||
The Bohr radius including the effect of [[reduced mass]] in the hydrogen atom can be given by the following equation: | |||
:<math> \ a_0^* \ = \frac{\lambda_{\mathrm{p}} + \lambda_{\mathrm{e}}}{2\pi\alpha},</math> | |||
where: | |||
:<math> \lambda_{\mathrm{p}} \ </math> is the Compton wavelength of the [[proton]]. | |||
:<math> \lambda_{\mathrm{e}} \ </math> is the Compton wavelength of the electron. | |||
:<math> \alpha \ </math> is the fine structure constant. | |||
In the above equation, the effect of the [[reduced mass]] is achieved by using the increased Compton wavelength, which is just the Compton wavelengths of the electron and the proton added together. | |||
==See also== | |||
*[[Bohr model]] | |||
==Notes and references== | |||
{{Reflist}} | |||
== External links == | |||
* [http://math.ucr.edu/home/baez/lengths.html#bohr_radius Length Scales in Physics: the Bohr Radius] | |||
[[Category:Units of length]] | |||
[[Category:Atomic physics]] | |||
[[Category:Physical constants]] |
Revision as of 10:57, 1 May 2013
Vehicle Painter Batterton from Grande Prairie, likes to spend time becoming a child, property developers in new launch ec singapore and tutoring children. Is a travel maniac and recently took a vacation in Central Sikhote-Alin. The Bohr radius is a physical constant, approximately equal to the most probable distance between the proton and electron in a hydrogen atom in its ground state. It is named after Niels Bohr, due to its role in the Bohr model of an atom. The precise definition of the Bohr radius is:[1]
where:
- is the permittivity of free space
- is the reduced Planck's constant
- is the electron rest mass
- is the elementary charge
- is the speed of light in vacuum
- is the fine structure constant.
Or, in Gaussian units the Bohr radius is simply
According to 2010 CODATA the Bohr radius has a value of 5.2917721092(17)Template:E m (i.e., approximately 53 pm or 0.53 angstroms).[2][3]
In the Bohr model of the structure of an atom, put forward by Niels Bohr in 1913, electrons orbit a central nucleus. The model says that the electrons orbit only at certain distances from the nucleus, depending on their energy. In the simplest atom, hydrogen, a single electron orbits the nucleus and its smallest possible orbit, with lowest energy, has an orbital radius almost equal to the Bohr radius. (It is not exactly the Bohr radius due to the reduced mass effect. They differ by about 0.1%.)
Although the Bohr model is no longer in use, the Bohr radius remains very useful in atomic physics calculations, due in part to its simple relationship with other fundamental constants. (This is why it is defined using the true electron mass rather than the reduced mass, as mentioned above.) For example, it is the unit of length in atomic units.
According to the modern, quantum-mechanical understanding of the hydrogen atom, the average distance −its expectation value− between electron and proton is ≈1.5a0,[4] somewhat different than the value in the Bohr model (≈a0), but certainly the same order of magnitude.
The Bohr radius of the electron is one of a trio of related units of length, the other two being the Compton wavelength of the electron and the classical electron radius . The Bohr radius is built from the electron mass , Planck's constant and the electron charge . The Compton wavelength is built from , and the speed of light . The classical electron radius is built from , and . Any one of these three lengths can be written in terms of any other using the fine structure constant :
The Compton wavelength is about 20 times smaller than the Bohr radius, and the classical electron radius is about 1000 times smaller than the Compton wavelength.
Reduced Bohr radius
The Bohr radius including the effect of reduced mass in the hydrogen atom can be given by the following equation:
where:
- is the Compton wavelength of the proton.
- is the Compton wavelength of the electron.
- is the fine structure constant.
In the above equation, the effect of the reduced mass is achieved by using the increased Compton wavelength, which is just the Compton wavelengths of the electron and the proton added together.
See also
Notes and references
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.
External links
- ↑ David J. Griffiths, Introduction to Quantum Mechanics, Prentice-Hall, 1995, p. 137. ISBN 0-13-124405-1
- ↑ Template:Cite web
- ↑ The number in parenthesis (36) denotes the uncertainty of the last digits.
- ↑ Modern physics, by Serway, Moses, Moyer, Example 8.9, p284 The value 1.5a0 is approximate, not exact, because it neglects reduced mass, fine structure effects (such as relativistic corrections), and other such small effects.