Conformal radius: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Zoydb2
m z' had not yet been introduced.
en>Rjwilmsi
m References: Added 1 doi to a journal cite using AWB (10383)
 
Line 1: Line 1:
{| class=wikitable align=right width=500
|- align=center
|[[File:8-cube_t7.svg|120px]]<BR>[[8-orthoplex]]<BR>{{CDD|node_1|3|node|3|node|3|node|3|node|3|node|3|node|4|node}}
|[[File:8-cube_t6.svg|120px]]<BR>Rectified 8-orthoplex<BR>{{CDD|node|3|node_1|3|node|3|node|3|node|3|node|3|node|4|node}}
|[[File:8-cube_t5.svg|120px]]<BR>Birectified 8-orthoplex<BR>{{CDD|node|3|node|3|node_1|3|node|3|node|3|node|3|node|4|node}}
|[[File:8-cube_t4.svg|120px]]<BR>Trirectified 8-orthoplex<BR>{{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node|4|node}}
|- align=center
|[[File:8-cube_t3.svg|120px]]<BR>[[Trirectified 8-cube]]<BR>{{CDD|node|3|node|3|node|3|node|3|node_1|3|node|3|node|4|node}}
|[[File:8-cube_t2.svg|120px]]<BR>[[Birectified 8-cube]]<BR>{{CDD|node|3|node|3|node|3|node|3|node|3|node_1|3|node|4|node}}
|[[File:8-cube_t1.svg|120px]]<BR>[[Rectified 8-cube]]<BR>{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node_1|4|node}}
|[[File:8-cube_t0.svg|120px]]<BR>[[8-cube]]<BR>{{CDD|node|3|node|3|node|3|node|3|node|3|node|3|node|4|node_1}}
|-
!colspan=4|[[Orthogonal projection]]s in A<sub>8</sub> [[Coxeter plane]]
|}
In eight-dimensional [[geometry]], a '''rectified 8-orthoplex''' is a convex [[uniform 8-polytope]], being a [[Rectification (geometry)|rectification]] of the regular [[8-orthoplex]].


There are unique 8 degrees of rectifications, the zeroth being the [[8-orthoplex]], and the 7th and last being the [[8-cube]]. Vertices of the rectified 8-orthoplex are located at the edge-centers of the 8-orthoplex. Vertices of the birectified 8-orthoplex are located in the triangular face centers of the 8-orthoplex. Vertices of the trirectified 8-orthoplex are located in the [[tetrahedron|tetrahedral]] cell centers of the 8-orthoplex.


== Rectified 8-orthoplex ==
The goal is to work reviewing the facts of the felony charge, can save you and all of individuals and companies charged with [http://www.sharkbayte.com/keyword/criminal+conduct criminal conduct] If you loved this short article and you would like to get much more information pertaining to [http://beigedefenseattorneymonkey.doppelcarport.net insurance Defense attorneys in Dallas tx] kindly visit the web page. .
{| class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Rectified 8-orthoplex
|-
|bgcolor=#e7dcc3|Type||[[uniform 8-polytope]]
|-
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| t<sub>1</sub>{3,3,3,3,3,3,4}
|-
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]s||{{CDD|node|3|node_1|3|node|3|node|3|node|3|node|3|node|4|node}}<br>{{CDD|node|3|node_1|3|node|3|node|3|node|3|node|split1|nodes}}
|-
|bgcolor=#e7dcc3|7-faces||272
|-
|bgcolor=#e7dcc3|6-faces||3072
|-
|bgcolor=#e7dcc3|5-faces||8960
|-
|bgcolor=#e7dcc3|4-faces||12544
|-
|bgcolor=#e7dcc3|Cells||10080
|-
|bgcolor=#e7dcc3|Faces||4928
|-
|bgcolor=#e7dcc3|Edges||1344
|-
|bgcolor=#e7dcc3|Vertices||112
|-
|bgcolor=#e7dcc3|[[Vertex figure]]||6-orthoplex prism
|-
|bgcolor=#e7dcc3|[[Petrie polygon]]||[[hexakaidecagon]]
|-
|bgcolor=#e7dcc3|[[Coxeter group]]s||C<sub>8</sub>, [4,3<sup>6</sup>]<BR>D<sub>8</sub>, [3<sup>5,1,1</sup>]
|-
|bgcolor=#e7dcc3|Properties||[[Convex polytope|convex]]
|}
 
The rectified 8-orthoplex has 112 vertices. These represent the root vectors of the [[simple Lie group]] D<sub>8</sub>. The vertices can be seen in 3 [[hyperplane]]s, with the 28 vertices [[rectified 7-simplex]]s cells on opposite sides, and 56 vertices of an [[expanded 7-simplex]] passing through the center. When combined with the 16 vertices of the 8-orthoplex, these vertices represent the 128 root vectors of the B<sub>8</sub> and C<sub>8</sub> simple Lie groups.
=== Related polytopes ===
 
The ''rectified 8-orthoplex'' is the [[vertex figure]] for the [[demiocteractic honeycomb]].
: {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|split1|nodes}} or {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|3|node|4|node}}
 
=== Alternate names===
* rectified octacross
* rectified diacosipentacontahexazetton (Acronym: rek) (Jonathan Bowers)<ref>Klitzing, (o3x3o3o3o3o3o4o - rek)</ref>
 
=== Construction ===
 
There are two [[Coxeter group]]s associated with the ''rectified 8-orthoplex'', one with the C<sub>8</sub> or [4,3<sup>6</sup>] Coxeter group, and a lower symmetry with two copies of heptcross facets, alternating, with the D<sub>8</sub> or [3<sup>5,1,1</sup>] Coxeter group.
 
=== Cartesian coordinates ===
[[Cartesian coordinates]] for the vertices of a rectified 8-orthoplex, centered at the origin, edge length <math>\sqrt{2}</math> are all permutations of:
: (±1,±1,0,0,0,0,0,0)
 
=== Images ===
{{8-cube Coxeter plane graphs|t6|150}}
 
== Birectified 8-orthoplex==
{| class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Birectified 8-orthoplex
|-
|bgcolor=#e7dcc3|Type||[[uniform 8-polytope]]
|-
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| t<sub>2</sub>{3,3,3,3,3,3,4}
|-
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]s||{{CDD|node|3|node|3|node_1|3|node|3|node|3|node|3|node|4|node}}<br>{{CDD|node|3|node|3|node_1|3|node|3|node|3|node|split1|nodes}}
|-
|bgcolor=#e7dcc3|7-faces||
|-
|bgcolor=#e7dcc3|6-faces||
|-
|bgcolor=#e7dcc3|5-faces||
|-
|bgcolor=#e7dcc3|4-faces||
|-
|bgcolor=#e7dcc3|Cells||
|-
|bgcolor=#e7dcc3|Faces||
|-
|bgcolor=#e7dcc3|Edges||
|-
|bgcolor=#e7dcc3|Vertices||
|-
|bgcolor=#e7dcc3|[[Vertex figure]]||{3,3,3,4}x{3}
|-
|bgcolor=#e7dcc3|[[Coxeter group]]s||C<sub>8</sub>, [3,3,3,3,3,3,4]<BR>D<sub>8</sub>, [3<sup>5,1,1</sup>]
|-
|bgcolor=#e7dcc3|Properties||[[Convex polytope|convex]]
|}
 
=== Alternate names===
* birectified octacross
* birectified diacosipentacontahexazetton (Acronym: bark) (Jonathan Bowers)<ref>Klitzing, (o3o3x3o3o3o3o4o - bark)</ref>
=== Cartesian coordinates ===
[[Cartesian coordinates]] for the vertices of a birectified 8-orthoplex, centered at the origin, edge length <math>\sqrt{2}</math> are all permutations of:
: (±1,±1,±1,0,0,0,0,0)
 
=== Images ===
{{8-cube Coxeter plane graphs|t5|150}}
 
== Trirectified 8-orthoplex==
{| class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Trirectified 8-orthoplex
|-
|bgcolor=#e7dcc3|Type||[[uniform 8-polytope]]
|-
|bgcolor=#e7dcc3|[[Schläfli symbol]]|| t<sub>3</sub>{3,3,3,3,3,3,4}
|-
|bgcolor=#e7dcc3|[[Coxeter-Dynkin diagram]]s||{{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node|4|node}}<br>{{CDD|node|3|node|3|node|3|node_1|3|node|3|node|split1|nodes}}
|-
|bgcolor=#e7dcc3|7-faces||
|-
|bgcolor=#e7dcc3|6-faces||
|-
|bgcolor=#e7dcc3|5-faces||
|-
|bgcolor=#e7dcc3|4-faces||
|-
|bgcolor=#e7dcc3|Cells||
|-
|bgcolor=#e7dcc3|Faces||
|-
|bgcolor=#e7dcc3|Edges||
|-
|bgcolor=#e7dcc3|Vertices||
|-
|bgcolor=#e7dcc3|[[Vertex figure]]||{3,3,4}x{3,3}
|-
|bgcolor=#e7dcc3|[[Coxeter group]]s||C<sub>8</sub>, [3,3,3,3,3,3,4]<BR>D<sub>8</sub>, [3<sup>5,1,1</sup>]
|-
|bgcolor=#e7dcc3|Properties||[[Convex polytope|convex]]
|}
The '''trirectified 8-orthoplex''' can [[tessellation|tessellate]] space in the [[quadrirectified 8-cubic honeycomb]].
 
=== Alternate names===
* trirectified octacross
* trirectified diacosipentacontahexazetton (acronym: tark) (Jonathan Bowers)<ref>Klitzing, (o3o3o3x3o3o3o4o - tark)</ref>
 
=== Cartesian coordinates ===
[[Cartesian coordinates]] for the vertices of a trirectified 8-orthoplex, centered at the origin, edge length <math>\sqrt{2}</math> are all permutations of:
: (±1,±1,±1,±1,0,0,0,0)
 
=== Images ===
{{8-cube Coxeter plane graphs|t4|150}}
 
== Notes==
{{reflist}}
 
== References==
* [[Harold Scott MacDonald Coxeter|H.S.M. Coxeter]]:
** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973
** '''Kaleidoscopes: Selected Writings of H.S.M. Coxeter''', editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'', [Math. Zeit. 46 (1940) 380-407, MR 2,10]
*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'', [Math. Zeit. 188 (1985) 559-591]
*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'', [Math. Zeit. 200 (1988) 3-45]
* [[Norman Johnson (mathematician)|Norman Johnson]] ''Uniform Polytopes'', Manuscript (1991)
** N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D.
* {{KlitzingPolytopes|polyzetta.htm|8D|uniform polytopes (polyzetta)}} o3x3o3o3o3o3o4o - rek, o3o3x3o3o3o3o4o - bark, o3o3o3x3o3o3o4o - tark
 
== External links ==
*{{GlossaryForHyperspace | anchor=Cross | title=Cross polytope }}
* [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions]
* [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
 
{{Polytopes}}
 
[[Category:8-polytopes]]

Latest revision as of 09:01, 19 August 2014


The goal is to work reviewing the facts of the felony charge, can save you and all of individuals and companies charged with criminal conduct If you loved this short article and you would like to get much more information pertaining to insurance Defense attorneys in Dallas tx kindly visit the web page. .