AN-VI: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Vanischenu
Specified the reason
 
en>Thibbs
m Generalizing Britishism per WP:VNE
Line 1: Line 1:
I am 19 years old and my name is Lavonda Ryrie. I life in Hemingford Abbots (Great Britain).<br><br>Also visit my website - [http://tinyurl.com/ly4koh3 http://tinyurl.com/ly4koh3]
The '''Korn–Kreer–Lenssen model''' ('''KKL model''') is a discrete [[Trinomial tree|trinomial model]] proposed in 1998 by Ralf Korn, Markus Kreer and Mark Lenssen to model [[illiquid securities]] and to value [[Derivative (finance)|financial derivatives]] on these. It generalizes the binomial [[Cox-Ross-Rubinstein model]] in a natural way as the stock in a given time interval can either rise one unit up, fall one unit down or remain unchanged. In contrast to [[Black–Scholes]] or [[Cox-Ross-Rubinstein model]] the [[market]] consisting of stock and cash is not complete yet. To value and replicate a financial derivative an additional traded security related to the original security needs to be added. This  might be a Low Exercise Price Option (or short [[LEPO]]). The mathematical proof of arbitrage free pricing is based on [[Martingale representation theorem|martingale representations]] for point processes pioneered in the 1980s and 1990 by [[Albert Shiryaev]], Robert Liptser and [[Marc Yor]].
 
The dynamics is based on continuous time linear [[birth-death process]]es and analytic formulae for option prices and Greeks can be stated. Later work looks at market completion with general calls or puts.<ref>http://www.wilmott.com/pdfs/101130_chen.pdf</ref> A comprehensive introduction may be found in the attached MSc-thesis.<ref>http://resources.aims.ac.za/archive/2010/obeng.pdf</ref>
 
The model belongs to the class of [[Trinomial tree|trinomial models]] and the difference to the standard [[trinomial tree]] is the following: if <math> \Delta t </math> denotes the waiting time between two movements of the stock price then in the KKL-model <math> \Delta t </math> remains finite and exponentially distributed whereas in [[trinomial tree]]s the time is discrete and the limit <math> \Delta t \rightarrow 0</math> is taken by numerical extrapolation afterwards.
 
==See also==
*[[Binomial options pricing model]]
*[[Trinomial tree]]
*[[Valuation of options]]
*[[Option_(finance)#Model_implementation|Option: Model implementation]]
 
== References ==
<references />
<!--- After listing your sources please cite them using inline citations and place them after the information they cite. Please see http://en.wikipedia.org/wiki/Wikipedia:REFB for instructions on how to add citations. --->
*
*
*
*
 
== Literature ==
* Ralf Korn, Markus Kreer and Mark Lenssen: "Pricing of european options when the underlying stock price follows a linear birth-death process", Stochastic Models Vol. 14(3), 1998, pp 647 – 662
* Xiong Chen: "The Korn-Kreer-Lenssen Model as an alternative for option pricing", Willmott Magazine June 2004, pp 74–80
 
{{DEFAULTSORT:Korn-Kreer-Lenssen model}}
[[Category:Mathematical finance]]
[[Category:Finance theories]]

Revision as of 15:11, 14 July 2013

The Korn–Kreer–Lenssen model (KKL model) is a discrete trinomial model proposed in 1998 by Ralf Korn, Markus Kreer and Mark Lenssen to model illiquid securities and to value financial derivatives on these. It generalizes the binomial Cox-Ross-Rubinstein model in a natural way as the stock in a given time interval can either rise one unit up, fall one unit down or remain unchanged. In contrast to Black–Scholes or Cox-Ross-Rubinstein model the market consisting of stock and cash is not complete yet. To value and replicate a financial derivative an additional traded security related to the original security needs to be added. This might be a Low Exercise Price Option (or short LEPO). The mathematical proof of arbitrage free pricing is based on martingale representations for point processes pioneered in the 1980s and 1990 by Albert Shiryaev, Robert Liptser and Marc Yor.

The dynamics is based on continuous time linear birth-death processes and analytic formulae for option prices and Greeks can be stated. Later work looks at market completion with general calls or puts.[1] A comprehensive introduction may be found in the attached MSc-thesis.[2]

The model belongs to the class of trinomial models and the difference to the standard trinomial tree is the following: if Δt denotes the waiting time between two movements of the stock price then in the KKL-model Δt remains finite and exponentially distributed whereas in trinomial trees the time is discrete and the limit Δt0 is taken by numerical extrapolation afterwards.

See also

References

Literature

  • Ralf Korn, Markus Kreer and Mark Lenssen: "Pricing of european options when the underlying stock price follows a linear birth-death process", Stochastic Models Vol. 14(3), 1998, pp 647 – 662
  • Xiong Chen: "The Korn-Kreer-Lenssen Model as an alternative for option pricing", Willmott Magazine June 2004, pp 74–80