FRW/CFT duality: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>BattyBot
m fixed CS1 errors: dates & General fixes using AWB (9816)
en>AnomieBOT
m Dating maintenance tags: {{Fact}}
Line 1: Line 1:
[[Image:Maxwell Ultracapacitors.jpg|thumb|right|200px|[[Maxwell Technologies]] supercapacitor products]]
My name is Marisol (46 years old) and my hobbies are Skateboarding and Creative writing.<br><br>my website [http://theultimatelive.com/index.php?do=/profile-8288/info/ People search]
 
'''Supercapacitor (SC)''',<ref name="conway1">{{cite book|author=B. E. Conway|title=Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications|year=1999|publisher=Springer|location=Berlin|isbn=0306457369
|url=http://books.google.de/books?id=8yvzlr9TqI0C&pg=PA1| |accessdate=May 2, 2013}}</ref> formerly '''electric double-layer capacitor (EDLC)''', is the generic term for a family of [[Electrochemistry|electrochemical]] [[capacitor]]s. Supercapacitors, sometimes also called ultracapacitors, don't have a conventional solid [[dielectric]]. The capacitance value of an electrochemical capacitor is determined by two storage principles, which both contribute indivisible to the total capacitance:<ref name="Halper">{{cite techreport|author= Marin S. Halper, James C. Ellenbogen |title= Supercapacitors: A Brief Overview |publisher=MITRE Nanosystems Group|date= March 2006|url= http://www.mitre.org/sites/default/files/pdf/06_0667.pdf ||accessdate=2014-01-20}}</ref><ref name="Frackowiak1">Elzbieta Frackowiak, Francois Beguin, PERGAMON, Carbon 39 (2001) 937–950, Carbon materials for the electrochemical storage of energy in Capacitors [http://www.sciencedirect.com/science/article/pii/S0008622300001834]</ref><ref name="Volfkovich">Yu.M. Volfkovich, A.A. Mikhailin, D.A. Bograchev, V.E. Sosenkin and V.S. Bagotsky, Studies of Supercapacitor Carbon Electrodes with High Pseudocapacitance, A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia, Dr. Ujjal Kumar Sur (Ed.), ISBN 978-953-307-830-4, free copy: [http://cdn.intechopen.com/pdfs/26963/InTech-Studies_of_supercapacitor_carbon_electrodes_with_high_pseudocapacitance.pdf PDF]</ref>
 
The storage principles are:
 
* [[Double-layer capacitance]] – [[Electrostatics|Electrostatic]] storage achieved by separation of charge in a [[Hermann von Helmholtz|Helmholtz]] [[Double layer (interfacial)|double layer]] at the [[Interface (chemistry)|interface]] between the surface of a conductive [[electrode]] and an [[electrolyte]]. The separation of charge is of the order of a few [[ångström]]s (0.3–0.8&nbsp;[[Nanometre|nm]]), much smaller than in a conventional capacitor.<ref name="Namisnyk">{{cite techreport|author= Adam Marcus Namisnyk |title= A survey of electrochemical supercapacitor technology |url= http://services.eng.uts.edu.au/cempe/subjects_JGZ/eet/Capstone%20thesis_AN.pdf |accessdate=2013-04-02}}</ref>
* [[Pseudocapacitance]] – [[Faradaic current|Faradaic]] electrochemical storage with [[electron transfer|electron]] [[Charge-transfer complex|charge-transfer]], achieved by [[Redox|redox reactions]], [[Intercalation (chemistry)|intercalation]] or [[wikt:electrosorption|electrosorption]].<ref name="Namisnyk" />
 
The ratio of the two storage principles can vary greatly, depending on the design of the electrodes and the composition of the electrolyte. Pseudocapacitance can be as much as 10x that of double-layer capacitance.<ref name="conway1" />
 
Supercapacitors are divided into three families, based on electrode design:
 
* Double-layer capacitors – with [[carbon]] electrodes or derivates with much higher electrostatic double-layer capacitance than electrochemical pseudocapacitance
* Pseudocapacitors – with [[metal oxide]] or [[conducting polymer]] electrodes with a high amount of electrochemical pseudocapacitance
* Hybrid capacitors – capacitors with asymmetric electrodes one of which exhibits mostly electrostatic and the other mostly electrochemical capacitance, such as [[lithium-ion capacitor]]s
[[File:Supercapacitors-Short-Overview.png|thumb|right|300px|Hierarchical classification of supercapacitors and related types]]
 
Supercapacitors bridge the gap between conventional capacitors and [[Rechargeable battery|rechargeable batteries]]. They store the most energy per unit volume or mass ([[energy density]]) among capacitors. They support up to 12,000 [[farads]]/1.2 volt,<ref name=Elton>{{cite web|url=http://www.elton-cap.com/products/capacitor-cells/ |title=Capacitor cells - ELTON |publisher=Elton-cap.com |date= |accessdate=2013-05-29}}</ref> up to 10,000 times that of [[electrolytic capacitor]]s, but deliver/accept less than half as much power per unit time ([[power density]]).<ref name="conway1" />
 
By contrast, while supercapacitors have energy densities that are approximately 10% of conventional batteries, their power density is generally 10 to 100 times greater. This results in much shorter charge/discharge cycles than batteries. Additionally, they will tolerate many more charge and discharge cycles than batteries.
 
In these electrochemical capacitors, the electrolyte is the conductive connection between the two electrodes. This distinguishes them from electrolytic capacitors, in which the electrolyte is the cathode and thus forms the second electrode.
 
Supercapacitors are polarized and must operate with the correct polarity. Polarity is controlled by design with asymmetric electrodes, or, for symmetric electrodes, by a potential applied during manufacture.
 
Supercapacitors support a broad spectrum of applications, including:
* Low supply current for memory backup in ([[Static random-access memory|SRAM]]s)
* Power for cars, buses, trains, cranes and elevators, including energy recovery from braking, short-term energy storage and burst-mode power delivery
 
Exceptional are the manifold different trade or series names used for supercapacitors like: APowerCap, BestCap, BoostCap, CAP-XX, DLCAP, EneCapTen, EVerCAP, DynaCap, Faradcap, GreenCap, Goldcap, HY-CAP, Kapton capacitor, Super capacitor, SuperCap, PAS Capacitor, PowerStor, PseudoCap, Ultracapacitor.
{{toclimit|3}}
 
==History==
Development of the double layer and pseudocapacitance model see [[Double layer (interfacial)]]
 
===Evolution of components===
 
In the early 1950s, [[General Electric]] engineers began experimenting with components using porous carbon electrodes for [[fuel cell]]s and [[Rechargeable battery|rechargeable batteries]]. [[Activated carbon|Activated charcoal]] is an [[Electrical resistivity and conductivity|electrical conductor]] that is an extremely porous "spongy" form of carbon with a high [[specific surface area]]. In 1957 H. Becker developed a "Low voltage electrolytic capacitor with porous carbon electrodes".<ref>{{Ref patent|country=US|number=2800616|title=Low voltage electrolytic capacitor|gdate=1957-07-23|invent1=Becker, H.I.}}</ref><ref name="Boggs">J. Ho, T. R. Jow, S. Boggs, [http://www.ifre.re.kr/board/filedown.php?seq=179 Historical Introduction to Capacitor Technology]</ref><ref>A brief history of supercapacitors AUTUMN 2007 [http://www.cantecsystems.com/ccrdocs/brief-history-of-supercapacitors.pdf Batteries & Energy Storage Technology]</ref> He believed that the energy was stored as a charge in the carbon pores as in the pores of the etched foils of electrolytic capacitors. Because the double layer mechanism was not known at the time, he wrote in the patent:  "It is not known exactly what is taking place in the component if it is used for energy storage, but it leads to an extremely high capacity."
 
General Electric did not immediately pursue this work. In 1966 researchers at [[Standard Oil of Ohio]] (SOHIO) developed another version of the component as "electrical energy storage apparatus", while working on experimental [[fuel cell]] designs.<ref>{{Ref patent|country=US|number=3288641|title=Electrical energy storage apparatus|gdate=1966-11-29|invent1=RIGHTMIRE, ROBERT A.}}</ref><ref name="Schindall">J. G. Schindall, The Change of the Ultra-Capacitors, IEEE Spectrum, November 2007 [http://www.spectrum.ieee.org/nov07/5636/2 The Charge of the Ultra – Capacitors]</ref> The nature of electrochemical energy storage was not described in this patent. Even in 1970, the electrochemical capacitor patented by Donald L. Boos was registered as an electrolytic capacitor with activated carbon electrodes.<ref>{{Ref patent|country=US|number=3536963|titel=Electrolytic capacitor having carbon paste electrodes|gdate=1970-10-27|invent=D. L. Boos}}</ref>
 
Early electrochemical capacitors used two aluminum foils covered with activated carbon - the electrodes - which were soaked in an electrolyte and separated by a thin porous insulator. This design gave a capacitor with a capacitance value in the one [[farad]] area, significantly higher than electrolytic capacitors of the same dimensions. This basic mechanical design remains the basis of most electrochemical capacitors.
 
SOHIO did not commercialize their invention, licensing the technology to [[NEC]], who finally marketed the results as "supercapacitors" in 1971, to provide backup power for computer memory.<ref name="Schindall" />
 
[[File:Bockris Group At Imperical College, London 1947.png|thumb|left|Ph.D., Brian Evans Conway within the [[John Bockris]] Group At Imperial College, London 1947]]
 
Between 1975 and 1980 [[Brian Evans Conway]] conducted extensive fundamental and development work on [[ruthenium oxide]] electrochemical capacitors. In 1991 he described the difference between ‘Supercapacitor’ and ‘Battery’ behavior in electrochemical energy storage. In 1999 he coined the term supercapacitor to explain the increased capacitance by surface redox reactions with faradaic charge transfer between electrodes and ions.<ref name="conway1"/><ref name="Conway Transition">{{Literatur|Autor=B. E. Conway|Titel=Transition from ‘Supercapacitor’ to ‘Battery’ Behavior in Electrochemical Energy Storage|Sammelwerk=Journal of The Electrochemical Society|Band=138|Nummer=6|Jahr=1991|Monat=Mai|Seiten=1539–1548|url=http://jes.ecsdl.org/content/138/6/1539.full.pdf+html |DOI=10.1149/1.2085829}}</ref>
 
His "supercapacitor" stored electrical charge partially in the Helmholtz double-layer and partially as the result of faradaic reactions with "pseudocapacitance" charge transfer of electrons and protons between electrode and electrolyte. The working mechanisms of pseudocapacitors are redox reactions, intercalation and electrosorption. With his research Conway extend the knowledge about electrochemical capacitors up to a new level.
 
The market expanded slowly. That changed around 1978 as [[Panasonic]] marketed its "Goldcaps” brand.<ref>Panasonic, Electric Double Layer Capacitor , Technical guide,1. Introduction,[http://industrial.panasonic.com/www-data/pdf/ABC0000/ABC0000TE1.pdf Panasonic Goldcaps]</ref> This product became a successful energy source for memory backup applications.<ref name="Schindall" /> Competition started only years later. In 1987 [[Elna (Japanese company)|ELNA]] "Dynacap"s entered the market.<ref name="Elna_DynaCap">{{cite web|url=http://www.elna.co.jp/en/capacitor/double_layer/index.html |title=Electric double-layer capacitors |publisher=ELNA |date= |accessdate=2013-05-29}}</ref> First generation EDLC's had relatively high [[internal resistance]] that limited the discharge current. They were used for low current applications such as powering [[Static random-access memory|SRAM]] chips or for data backup.
 
At the end of the 1980s improved electrode materials increased capacitance values. At the same time the development of electrolytes with better conductivity lowered the [[Equivalent Series Resistance]] (ESR) increasing charge/discharge currents. The first supercapacitor with low internal resistance was developed in 1982 for military applications through the Pinnacle Research Institute (PRI), and were marketed under the brand name "PRI Ultracapacitor". In 1992, Maxwell Laboratories, (later [[Maxwell Technologies]]) took over this development. Maxwell adopted the term Ultracapacitor from PRI and called them "Boost Caps"<ref name="Namisnyk" /> to underline their use for power applications.
 
Since capacitors' energy content increases with the square of the voltage, researchers were looking for a way to increase the electrolyte's [[breakdown voltage]]. In 1994 using the [[anode]] of a 200V high voltage [[Tantalum capacitor|tantalum electrolytic capacitor]], David A. Evans developed an "Electrolytic-Hybrid Electrochemical Capacitor".<ref>{{patent|US| 5369547}}</ref><ref>David A. Evans (Evans Company): ''[http://www.evanscap.com/pdf/carts14.pdf High Energy Density Electrolytic-Electrochemical Hybrid Capacitor]'' In: ''Proceedings of the 14th Capacitor & Resistor Technology Symposium.'' 22. March 1994</ref>
 
These capacitors combine features of electrolytic and electrochemical capacitors. They combine the high dielectric strength of an anode from an electrolytic capacitor with the high capacitance of a pseudocapacitive [[metal oxide]] ([[ruthenium]] (IV) oxide) [[cathode]] from an electrochemical capacitor, yielding a hybrid electrochemical capacitor. Evans' capacitors, coined Capattery,<ref>Evans Capacitor Company 2007 [http://www.evanscap.com/the_capattery.htm Capattery series]</ref> had an energy content about a factor of 5 higher than a comparable tantalum electrolytic capacitor of the same size.<ref name="Evans5-2">David A. Evans: [http://www.evanscap.com/isdlc5-2.htm ''The Littlest Big Capacitor - an Evans Hybrid.''] Technical Paper - Evans Capacitor Company 2007</ref> Their high costs limited them to specific military applications.
 
Recent developments include [[lithium-ion capacitor]]s. These hybrid capacitors were pioneered by FDK in 2007.<ref>[http://www.fdk.com/company_e/ayumi2000-e.html FDK, Corporate Information, FDK Historie 2000s]</ref> They combine an electrostatic carbon electrode with a pre-doped lithium-ion electrochemical electrode. This combination increases the capacitance value. Additionally, the pre-doping process lowers the anode potential and results in a high cell output voltage, further increasing energy density.
 
Research departments are active in many companies and universities<ref name=Naoi-Simon>K. Naoi,  P. Simon,  [http://www.electrochem.org/dl/interface/spr/spr08/spr08_p34-37.pdf New Materials and New Configurations for Advanced Electrochemical Capacitors], ECS, Vol. 17, No. 1, Spring 2008</ref> are working to improve characteristics, such as energy density, power density, cycle stability and reduce production costs.
 
==Basics==
 
=== Basic design ===
[[File:Electric double-layer capacitor (2 models) -1 NT.PNG|thumb|right|200px|Principle construction of a supercapacitor; 1. power source, 2. collector, 3.polarized electrode, 4. Helmholtz double layer, 5. electrolyte having positive and negative ions, 6. Separator.]]
 
[[Electrochemistry|Electrochemical]] capacitors (supercapacitors) basically consists out of two electrodes separated by an ion permeable membrane (separator), and an electrolyte connecting electrically the both electrodes. By applying a voltage to the capacitor an electric double layer at both electrodes is formed, which has a positive or negative layer of ions deposited in a mirror image on the opposite electrode.
 
=== Capacitance distribution ===
The two electrodes form a series circuit of two individual capacitors C<sub>1</sub> and C<sub>2</sub>. The total capacitance C<sub>total</sub> is given by the formula
 
<math>C_\text{total} = \frac{C_1 \cdot C_2}{C_1 + C_2}</math>
 
Supercapacitors can be constructed with either symmetric or asymmetric electrodes. Symmetry implies that both electrodes have the same capacitance value.
 
That means, if '''C<sub>1</sub> = C<sub>2</sub>''' than '''C<sub>total</sub> = 0.5 • C<sub>1</sub>'''. For symmetric capacitors the total capacitance value equals half the value of a single electrode.
 
For asymmetric capacitors one of the electrodes has higher capacitance value than the other. If '''C<sub>1</sub> <nowiki>>></nowiki> C<sub>2</sub>''' than '''C<sub>total</sub> ≈ C<sub>2</sub>'''. Asymmetric electrodes imply that total capacitance can equal that of a single electrode, potentially doubling the total
 
=== Storage principles ===
Electrochemical capacitors uses the double-layer effect to store electric energy. This double-layer has no conventional solid dielectric which separates the charges. The capacitance values of electrochemical capacitors are determined by two new and different high-capacity storage principles in the electric double-layer on their electrodes:
 
* [[Double-layer capacitance]], [[electrostatic]] storage of the electrical energy achieved by separation of charge in a Helmholtz double layer.<ref name="Halper" />
* [[Pseudocapacitance]], [[Electrochemistry|electrochemical]] storage of the electrical energy achieved by faradiac [[redox]] reactions with charge-transfer.<ref name="Namisnyk" />
 
The amount of charge stored per unit voltage in an electrochemical capacitor is primarily a function of the electrode size but the amount of capacitance of each storage principle can vary extremely. Double-layer capacitance and pseudocapacitance both contribute to the total capacitance value of an electrochemical capacitor.<ref name="Frackowiak1" /> Both capacitances are only separable by measurement techniques.
 
Practically, these storage principles yield a capacitor with a [[capacitance]] value on the order of units to hundreds [[Farad]].
 
=== Electrostatic double-layer capacitance ===
{{main|Double-layer capacitance}}
[[File:EDLC-simplified-principle.png|thumb|right|200px| Simplified view of a double-layer of negative ions in the electrode and solvated positive ions in the liquid electrolyte, separated by a layer of polarized solvent molecules.]]
 
Every electrochemical capacitor has two electrodes, mechanically separated by a separator, which are electrically connected to each other via the [[electrolyte]]. The electrolyte is a mixture of positive and negative ions dissolved in a solvent such as water. At each of the two electrodes surfaces originates an area in which the liquid electrolyte contacts the conductive metallic surface of the electrode. This interface forming a common boundary among two different [[Phase (matter)|phases]] of matter, such as an insoluble [[solid]] electrode surface and an adjacent [[liquid]] electrolyte. In this interface occurs a very special phenomenon of the [[Double layer (interfacial)|double layer effect]].<ref name="EDL">{{Cite web  | title = The electrical double layer  | year = 2011  | url = http://www.cartage.org.lb/en/themes/sciences/Chemistry/Electrochemis/Electrochemical/ElectricalDouble/ElectricalDouble.htm  | accessdate = 20 January 2014}}</ref>
 
Applying a voltage to an electro-chemical capacitor both electrodes in the capacitor generates [[Double layer (interfacial)|electrical double-layers]]. These double layers consist out of two layers of ions. One layer is in the surface lattice structure of the electrode. The other layer, with opposite polarity, emerges from [[Dissociation (chemistry)|dissolved]] and [[Solvation|solvated]] ions in the electrolyte. The two layers are separated by a monolayer of solvent [[molecule]]s, e. g. for [[water]] as [[solvent]] by water molecules. The monolayer forms the inner Helmholtz plane (IHP). It adheres by physical [[adsorption]] on the surface of the electrode and separates the oppositely polarized ions from each other, becoming a molecular dielectric. The forces that cause the [[adhesion]] are not chemical bonds but physical forces. Chemical bonds persist within of the adsorbed molecules, but they are polarized.
 
The amount of charge in the electrode is matched by the magnitude of counter-charges in outer Helmholtz plane (OHP). This double-layer phenomena store electrical charges as in a conventional capacitor. The double-layer charge forms a static electric field in the molecular layer of the solvent molecules in the IHP that corresponds to the strength of the applied voltage.
 
[[File:EDLC-Charge-Distribution.png|thumb|right|250px|Structure and function of an ideal double-layer capacitor.  Applying a voltage to the capacitor at both electrodes a Helmholtz double-layer will be formed separating the ions in the electrolyte in a mirror charge distribution of opposite polarity]]
 
The double-layer serves approximately like the dielectric layer in a conventional capacitor, but with the thickness of a single molecule. Therefore to calculate the capacitance the standard formula for conventional plate capacitors can be used. This capacitance can be calculated with:<ref name="Srinivasan">S. Srinivasan, Fuel Cells, From Fundamentals to Applications, Springer eBooks, 2006, ISBN 978-0-387-35402-6,[http://www.springer.com/chemistry/electrochemistry/book/978-0-387-25116-5 CHAPTER 2, ELECTRODE/ELECTROLYTE INTERFACES: STRUCTURE AND KINETICS OF CHARGE TRANSFER] (769 kB)</ref>
 
:<math>C= \frac{\varepsilon A}{d}</math>.
 
The capacitance C is greatest in capacitors made from materials with a high permittivity ε, large electrode plate surface areas A and reciprocal to the distance d between plates.
 
If the electrolyte solvent is water then the influence of the high field strength creates permittivity ε of 6 (instead of 80 without an applied electric field). Because activated carbon electrodes have an extremely large surface area in the range of 10 to 40&nbsp;µF/cm<sup>2</sup> and the extremely thin double-layer distance is on the order of a few [[ångström]]s (0.3-0.8&nbsp;nm), the double-layer capacitors have much higher capacitance values than conventional capacitors.<ref name="Halper" /><ref name="Namisnyk" />
 
The amount of charge stored per unit voltage in an electrochemical capacitor is primarily a function of the electrode size. The electrostatic storage of energy in the double-layers is linear with respect to the stored charge, and correspond to the concentration of the adsorbed ions. But deviating from conventional capacitors, where usually the charge is transferred via electrons, the capacitance of the double-layer capacitors depends from the limited moving speed of ions in the electrolyte and the resistive porous structure of the electrodes. Capacitance values of supercapacitors depends strongly on the measuring time.
Charging and discharging electric double-layers in principle is unlimited. No chemical changes take place. Lifetimes of real supercapacitors only are limited by electrolyte evaporation effects.
 
=== Electrochemical Pseudocapacitance ===
{{main|Pseudocapacitance}}
[[File:Pseudocapacitance-Priciple.png|thumb|right|200px|Simplified view of a double-layer with specifically adsorbed ions which have submitted their charge to the electrode to explain the faradaic charge-transfer of the pseudocapacitance.]]
 
Applying a voltage at the electrochemical capacitor terminals moves the polarized [[ion]]s or charged [[atom]]s in the electrolyte to the opposite polarized electrode and forms a double-layer, separated by a single layer of [[solvent]] molecules. Pseudocapacitance can originate when specifically adsorbed cations out of the electrolyte pervade the double-layer.
This pseudocapacitance stores [[Electric energy|electrical energy]] by means of reversible [[Faradaic current|faradaic]] [[Redox|redox reactions]] on the surface of suitable [[electrode]]s in an electrochemical capacitor with a [[Double layer (interfacial)|electric double-layer]].<ref name="conway1">{{Literatur|Autor=B. E. Conway|Titel=Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications|Verlag=Springer|Ort=Berlin|ISBN=0306457369|Jahr=1999|Seiten=1-8|Online={{Google Buch|BuchID=8yvzlr9TqI0C|Seite=1}}}} see also [http://electrochem.cwru.edu/encycl/art-c03-elchem-cap.htm Brian E. Conway in Electrochemistry Encyclopedia: ''ELECTROCHEMICAL CAPACITORS Their Nature, Function, and Applications'']</ref><ref name="Halper">{{Internetquelle|autor= Marin S. Halper, James C. Ellenbogen |titel= Supercapacitors: A Brief Overview |werk=MITRE Nanosystems Group|datum= March 2006|url=http://www.mitre.org/work/tech_papers/tech_papers_06/06_0667/06_0667.pdf|sprache=englisch|zugriff=2013-05-14}}</ref><ref name="Frackowiak">E. Frackowiak, F. Beguin: ''Carbon Materials For The Electrochemical Storage Of Energy In Capacitors.'' In: ''CARBON.'' 39, 2001, S. 937–950 ([http://144.206.159.178/ft/145/34337/587733.pdf PDF])  E. Frackowiak, K. Jurewicz, S. Delpeux, F. Béguin: ''Nanotubular Materials For Supercapacitors.'' In: ''Journal of Power Sources.'' Volumes 97–98, Juli 2001, S. 822–825, {{doi|10.1016/S0378-7753(01)00736-4}}.</ref> Pseudocapacitance is accompanied with an [[electron]] [[Charge transfer complex|charge-transfer]] between [[electrolyte]] and electrode coming from a [[Solvation|de-solvated]] and [[Adsorbtion|adsorbed]] [[ion]] whereby only one electron per charge unit is participating. This faradaic charge transfer originates by a very fast sequence of reversible redox, [[Intercalation (chemistry)|intercalation]] or [[Capacitive deionization|electrosorption]] processes. The adsorbed ion has no [[chemical reaction]] with the [[atom]]s of the electrode. No [[chemical bond]]s arise.<ref name="Garthwaite">{{cite web|last=Garthwaite|first=Josie|title=How ultracapacitors work (and why they fall short)|url=http://gigaom.com/cleantech/how-ultracapacitors-work-and-why-they-fall-short/|work=Earth2Tech|publisher=GigaOM Network|accessdate=23 April 2013|date=12 July 2011}}</ref> Only a charge-transfer take place.
 
The electrons involved in the faradaic processes are transferred to or from [[valence electron]] states ([[Atomic orbital|orbitals]]) of the redox electrode reagent. They enter the negative electrode and flow through the external circuit to the positive electrode where a second double-layer with an equal number of anions has formed. But these anions don’t accept the electrons. They remain on the electrode's surface in the charged state, and the electrons remain in the strongly ionized and "electron hungry" transition-metal ions of the electrode. This kind of pseudocapacitance has a linear function within narrow limits and is determined by the [[Electric potential|potential-dependent]] degree of surface coverage of the adsorbed anions. The storage capacity of the pseudocapacitance is limited by the finite quantity of [[reagent]] of available surface.
A faradaic pseudocapacitance still only occurs together with a static [[double-layer capacitance]]. Pseudocapacitance and double-layer capacitance both contribute indivisible to the total capacitance value of the chemical capacitor. The amount of pseudocapacitance depends on the surface area, material and structure of the electrodes.
[[File:Voltagram-Engl.png|thumb|left|200px|A cyclic voltammogram shows the fundamental differences between static capacitance (rectangular) and pseudocapacitance (curved)]]
 
Since all the pseudocapacitance  reactions take place only with de-solvated ions, which are much smaller than solvated ion with their solvating shell, the pseudocapacitance can be much higher than the double-layer capacitance for the same electrode surface.  Therefore the pseudocapacitance may exceed the value of double-layer capacitance for the same surface area by factor 100, depending on the nature and the structure of the electrode.<ref name="conway1" />
 
The ability of electrodes to accomplish pseudocapacitance effects by redox reactions, intercalation or electrosorption strongly depends on the chemical affinity of electrode materials to the ions adsorbed on the electrode surface as well as on the structure and dimension of the electrode pores. Materials exhibiting redox behavior for use as electrodes in pseudocapacitors are transition-metal oxides like [[ruthenium]] (RuO2), [[iridium]] (IrO2), or [[manganese]] (MnO2) inserted by doping in the conductive electrode material such as active carbon, as well as conducting polymers such as [[polyaniline]] or derivatives of [[polythiophene]] covering the electrode material.
 
Pseudocapacitance may also originate from the structure and especially from the pore size of the electrodes. The tailored sizes of pores in nano-structured carbon electrodes like [[carbide-derived carbon]]s (CDCs) or [[carbon nanotube]]s (CNTs) for electrodes can be referred to as intercalated pores which can be entered by de-solvated ions from the electrolyte solution and originates pseudocapacitance.[12][13][14]
 
The amount of [[electric charge]] stored in a pseudocapacitance is linearly proportional to the applied [[voltage]]. The unit of pseudocapacitance is [[farad]].
 
=== Potential distribution ===
[[File:Fixed capacitors-charge storage principles-2.png|thumb|center|350px|Charge storage principles of different capacitor types and their internal potential distribution]]
[[File:EDLC-Voltage distribution.png|thumb|right| Basic illustration of the functionality of a supercapacitor, the voltage distribution inside of the capacitor and its simplified equivalent DC circuit]]
 
Conventional [[capacitor]]s consist out of two [[electrode]]s which are separated by a [[dielectric]] material. In conventional capacitors such as [[ceramic capacitor]]s and [[film capacitor]]s, the [[electric charge]] of a loaded capacitor is stored in a [[Static electricity|static]] [[electric field]] that permeates the dielectric between the electrodes. The electric field originates by the separation of [[charge carriers]] and the strength of the electric field correlates with the [[Electric potential|potential]] between the two electrodes. It drops over the dielectric. The total energy increases with the amount of stored charge and the potential between the plates. The maximum potential between the plates, the maximal voltage, is limited by the dielectric's [[Dielectric breakdown|breakdown field strength]].
 
This static storage also applies for [[electrolytic capacitor]]s in which most of the potential decreases over the [[anode]]'s thin oxide layer. The electrolyte as [[cathode]] may be somewhat resistive so that for "wet" electrolytic capacitors, a small amount of the potential decreases over the electrolyte. For electrolytic capacitors with solid conductive polymer electrolyte this voltage drop is negligible.
[[File:Charge-Discharge-Supercap-vs-Battery.png|thumb|left|The voltage behavior of supercapacitors and batteries during charging/discharging differs clearly]]
 
Conventional capacitors are also called electrostatic capacitors. The potential (voltage) of a charged capacitor correlates linearly with the stored charge.
 
Different from conventional capacitors [[Electrochemistry|electrochemical]] [[capacitors]] (supercapacitors) basically consists out of two [[electrode]]s separated by an [[ion]] permeable [[membrane]] (separator), and electrically connected via an [[electrolyte]]. In this double-layer electrodes a mixture of a double-layer and pseudocapacitance is stored. If both electrodes have approximately the same [[Electrical resistance and conductance|resistance]] ([[#Internal resistance]]), the potential of the capacitor decreases symmetrically over both double-layers, whereby a voltage drop across the ESR of the electrolyte is achieved. The maximum potential across the capacitor, the maximal voltage, is limited by the electrolytes decomposition voltage.
 
Both the electrostatic and electrochemical storage of energy in electrochemical capacitors are linear with respect to the stored charge, just as in conventional capacitors. The voltage between the capacitors terminals is linear with respect to the amount of stored energy. This linear voltage gradient differs from rechargeable electrochemical batteries, in which the voltage between the terminals remains independent of the amount of stored energy, providing a relatively constant voltage.
 
==Construction==
 
=== Construction details ===
<gallery caption="Styles of supercapacitors with activated carbon electrodes" class="center" widths="250" heights="170">
File:Electric double-layer capacitor (Activated carbon electrode - Tube type).PNG|Schematic construction of a wound supercapacitors<br />1.Terminals, 2.Safety vent, 3.Sealing disc, 4.Aluminum can, 5.Positive pole, 6.Separator, 7.Carbon electrode, 8.Collector, 9.Carbon electrode, 10.Negative pole
File:Electric double-layer capacitor (Activated carbon electrode - BOX type).PNG|Schematic construction of a supercapacitor with stacked electrodes<br />1.Positive electrode, 2.Negative electrode, 3.Separator
</gallery>
 
Supercapacitors are constructed with two metal foils (current collectors), each coated with an [[electrode]] material e.g. [[activated carbon]]. The collectors serves as the power connection between the electrode material and the external terminals of the capacitor. Specifically of the electrode material is the structure having a very large surface. E. g. in this example activated carbon is electrochemically etched, so that the surface of the material is about a factor 100,000 larger than the smooth surface. The both electrodes are separated by an ion permeable [[membrane]] (separator) used as [[Insulator (electrical)|insulator]] to protect the electrodes against direct contact forcing [[short circuit]]s. This construction is subsequently rolled or folded into a cylindrical or rectangular shape and can be stacked in an aluminum can or an adaptable rectangular housing. Then the cell is impregnated with a liquid or viscous electrolyte organic or aqueous type, or may be of solid state. The electrolyte, an ionic conductor enters the pores of the electrodes and serves as conductive connection between the electrodes across the separator. Last but not least the housing will be hermetically closed to ensure stable behavior over the specified life time.
 
===Styles===
<gallery caption="Different styles of supercapacitors"
class="centered">
File:Supercap-flat-case.jpg|Flat style used for mobile components
File:Polarität-EDLC-P1070160.JPG|Typical knob capacitor for PCB mounting used for memory backup
File:Lithium Ionen Kondensator.jpg|Radial style of a ([[lithium-ion capacitor]]) for PCB mounting used for industrial applications
</gallery>
 
==Materials==
The properties of supercapacitors come from the interaction of their internal materials. Especially the combination of electrode material and kind of electrolyte determine the functionality and the thermic and electrical characteristics of the capacitors.
 
Additional the three members of the supercapacitor family are determined by their electrodes material and structure.
 
=== Supercapacitor types ===
[[File:Supercaps-family.png|thumb|center|300px|Family tree of supercapacitor types. Double-layer capacitors and pseudocapacitors as well as hybrid capacitors are defined over their electrode designs.]]
 
Supercapacitors store, as described above, its electric energy with the two different storage principles, the static [[double-layer capacitance]] and electrochemical [[pseudocapacitance]]. The distribution of the amounts of both capacitances per capacitor depends on the material and structure of the electrodes. Based on this the supercapacitor family are divided into three types:<ref name="Halper" /><ref name="Namisnyk" />
* '''Double-layer capacitors''' – with [[activated carbon]] electrodes or derivates with much higher electrostatic double-layer capacitance than electrochemical pseudocapacitance
* '''Pseudocapacitors''' – with [[transition metal]] oxide or conducting [[polymer]] electrodes with a high amount of electrochemical pseudocapacitance
* '''Hybrid capacitors''' – capacitors with asymmetric electrodes one of which exhibits mostly electrostatic and the other mostly electrochemical capacitance, such as [[lithium-ion capacitor]]s
 
===Electrodes===
[[File:ActivatedCharcoalPowder BrightField.jpg|thumb|right|A [[micrograph]] of activated charcoal under [[bright field microscopy|bright field]] illumination on a [[light microscope]]. Notice the [[fractal]]-like shape of the particles hinting at their enormous surface area. Each particle in this image, despite being only around 0.1 mm across, has a surface area of several square metres.]]
 
The electrodes for supercapacitors are generally thin coatings applied and electrical connected to a conductive, metallic [[current]] collector. Electrodes must exhibit good conductivity, high temperature stability, longtime chemical stability ([[inert]]), high corrosion resistance and high surface areas per unit volume and mass. Other requirements include environmental friendliness and low cost.
 
The amount of double-layer as well as pseudocapacitance stored per unit voltage in a supercapacitor is predominate a function of the electrode surface area. Therefore the electrodes for supercapacitors typically are made out of porous, [[Sponge|"spongy"]] material with an extraordinarily high [[specific surface area]], such as [[activated carbon]]. Additionally, the ability of the electrode material to perform faradaic charge transfers enhances the total capacitance.
 
Structurally, pore sizes in carbons range from micropores (less than 2&nbsp;nm) to mesopores (2-50&nbsp;nm) but below macropores (greater than 50&nbsp;nm).<ref name="Y-Carbon" /> Pseudocapacitance requires micropore that are accessible only to de-solvated ions.<ref name="Frackowiak1" />
 
Generally the smaller the electrode's pores, the greater the capacitance and [[energy density]]. However, smaller pores increase [[Equivalent series resistance|(ESR)]] and decrease [[power density]]. Applications with high peak currents require larger pores and low internal losses, while applications requiring high energy density need small pores.
 
===Electrodes for EDLCs===
The most commonly used electrode material for supercapacitors is carbon in various manifestations such as [[activated carbon]] (AC), carbon fibre-cloth (AFC), [[carbide-derived carbon]] (CDC), carbon [[aerogel]],  [[graphite]] ([[graphene]]), and [[carbon nanotube]]s (CNTs).<ref name="Frackowiak1"/><ref name="Pandolfo" /><ref name="Kinoshita1992">{{cite book|author=Kim Kinoshita|title=Electrochemical Oxygen Technology|url=http://books.google.com/books?id=2m22CvObj80C|date=30 June 1992|publisher=Wiley|isbn=978-0-471-57043-1}}</ref>
 
====Activated carbon====
<!-- Deleted image removed: [[File:Activated-carbon.jpg|thumb|right|Nanopores in activated carbon, as viewed by an electron microscope.]]  -->
 
[[Activated carbon]] (AC) was the first material chosen for EDLC electrodes. It has an [[Electrical resistivity and conductivity|electrical conductivity]] of 1,250 to 3,000&nbsp;[[Siemens (unit)|S]]/m, approximately 0.003% of metallic conductivity, but sufficient for supercapacitors.<ref name="Halper" /><ref name=" Namisnyk " />
 
[[Activated charcoal]] is an extremely porous form of carbon with a high [[specific surface area]] — a common approximation is that 1 gram (0.035&nbsp;oz) (a pencil-eraser-sized amount) has a surface area of roughly {{convert|1000|to| 3000|m2|ft2}}<ref name="Y-Carbon">[http://www.y-carbon.us/FAQ_ActiCarbX_s/1885.htm Y-Carbon, ActiCarbX, FAQ]</ref><ref name=Pandolfo>A.G. Pandolfo,  A.F. Hollenkamp, [http://144.206.159.178/ft/641/578423/12370492.pdf Carbon properties and their role in supercapacitors], Journal of Power Sources 157 (2006) 11–27</ref> — about the size of 4 to 12 [[tennis court]]s. It is typically a powder made of fine but "rough" particles. The bulk form used in electrodes is low-density with many pores, giving high double-layer capacitance.
 
Solid [[activated carbon]], also termed ''consolidated [[amorphous carbon]]'' (CAC) is the most used electrode material for supercapacitors and may be cheaper than other carbon derivatives.<ref>[http://reticlecarbon.com/ Reticle] {{cite patent|US||patent|6787235}}</ref> It is produced from activated carbon powder pressed into the desired shape, forming a block with a wide distribution of pore sizes. An electrode with a surface area of about 1000&nbsp;m<sup>2</sup>/g results in a typical double-layer capacitance of about 10&nbsp;μF/cm<sup>2</sup> and a specific capacitance of 100&nbsp;F/g.
 
{{As of|2010}} virtually all commercial supercapacitors use powdered [[activated carbon]] made from environmentally friendly [[coconut]] shells.<ref>{{cite journal|last=Laine|first=Jorge|coauthors=Simon Yunes|title=Effect of the preparation method on the pore size distribution of activated carbon from coconut shell|journal=Carbon|year=1992|volume=30|issue=4|pages=601–604|doi=10.1016/0008-6223(92)90178-Y|url=http://www.sciencedirect.com/science/article/pii/000862239290178Y}}</ref> Coconut shells produce activated carbon with more micropores than with charcoal from wood.<ref name="Y-Carbon" />
 
Activated carbon electrodes exhibit predominantly static double-layer capacitance, but also exhibit pseudocapacitance. Pores with diameters <2&nbsp;nm are accessible only to de-solvated ions and enable faradaic reactions.<ref name="Frackowiak1" />
 
Carbon nanotubes offer 3x more surface area than activated carbon.<ref name="Du">CHUNSHENG DU, NING PAN,[http://ningpan.net/Publications/101-150/125.pdf Carbon Nanotube-Based Supercapacitors], NANOTECHNOLOGY LAW & BUSINESS , MARCH 2007</ref> Higher performance, higher cost components are available, based on synthetic carbon precursors that are activated with [[potassium hydroxide]] (KOH).
 
====Activated carbon fibres====
[[File:CNTSEM.JPG|thumb|right|[[Scanning electron microscope|SEM]] image of carbon nanotube bundles with a surface of about 1500&nbsp;m<sup>2</sup>/g]]
 
Activated carbon fibres (ACF) are produced from activated carbon and have a typical diameter of 10&nbsp;µm.
They can have micropores with a very narrow pore-size distribution that can be readily controlled. The surface area of AFC woven into a textile is about {{val|2500|u=m<sup>2</sup>/g}}. Advantages of AFC electrodes include low electrical resistance along the fibre axis and good contact to the collector.<ref name="Pandolfo" />
 
AFC electrodes exhibit predominantly double-layer capacitance with a small amount of pseudocapacitance due to their micropores.
 
====Carbon aerogel====
[[File:Aerogel hand.jpg|thumb|left|A block of aerogel in hand]]
 
Carbon [[aerogel]] is a highly porous, [[Manufacturing|synthetic]], [[ultralight material]] derived from an organic [[gel]] in which the [[liquid]] component of the gel has been replaced with a [[gas]]. It is also called "frozen smoke".
 
Aerogel electrodes are made via [[pyrolysis]] of [[resorcinol]] [[formaldehyde]] aerogels.<ref>{{cite journal|first1=U. |last1=Fischer |first2=R. |last2=Saliger |first3=V. |last3=Bock |first4=R. |last4=Petricevic |first5=J. |last5=Fricke |title=Carbon Aerogels as Electrode Material in Supercapacitors |journal=Journal of Porous Materials |volume=4| issue = =4 |year=1997 |pages=281–285 |DOI=10.1023/A:1009629423578 |url=http://www.springerlink.com/content/l7246g76145491l2/}}</ref> Carbon aerogels are more conductive than most activated carbons. They enable thin and mechanically stable electrodes with a thickness in the range of several hundred [[micrometre|micrometers]] (µm) and with uniform pore size. It also exhibits mechanical and vibration stability for supercapacitors in high vibration applications.
 
Standard aerogel electrodes exhibit predominantly double-layer capacitance. Aerogel electrodes that incorporate [[composite material]] can add a high amount of pseudocapacitance.<ref name="Hsing-Chi"/>
 
Researchers have created a carbon aerogel electrode with [[gravimetry|gravimetric]] densities of about 400–1200&nbsp;m<sup>2</sup>/g and specific capacitance of 104&nbsp;F/cm<sup>3</sup>, yielding in energy density of {{val|325|u=J/g}} ({{val|90|u=W•h/kg}}) and power density of {{val|20|u=W/g}}.<ref name = "AIP">Lerner EJ,"[http://www.aip.org/tip/INPHFA/vol-10/iss-5/p26.html Less is more with aerogels: A laboratory curiosity develops practical uses]" ''The Industrial Physicist'' (2004)</ref><ref>M. LaClair, "[http://powerelectronics.com/mag/power_replacing_energy_storage/ Replacing Energy Storage with Carbon Aerogel Supercapacitors]", Power Electronics, Feb 1, 2003, Cooper Electronic Technologies, Boynton Beach, Fl.</ref>
 
In 2013, a [[aerographene]] with a volumetric density of 0.16&nbsp;mg/cm<sup>3</sup> was synthesized, becoming the lightest known material.<ref>{{cite web|url=http://www.gizmag.com/graphene-aerogel-worlds-lightest/26784 |title=Graphene aerogel takes world’s lightest material crown |publisher=Gizmag.com |date= |accessdate=2014-01-10}}</ref>
 
====Carbide-derived carbon====
 
[[Image:Figure4CDC.jpg|thumb|right|Pore size distributions for different carbide precursors.]]
 
[[Carbide-derived carbon]] (CDC), also known as [[tunable nanoporous carbon]], is a family of carbon materials derived from [[carbide]] precursors, such as binary [[silicon carbide]] and [[titanium carbide]], that are transformed into pure carbon via physical (e.g., [[thermal decomposition]]) or chemical (e.g., [[halogenation]]) processes.<ref>V. Presser, M. Heon, Y. Gogotsi, [http://onlinelibrary.wiley.com/doi/10.1002/adfm.201002094/abstract;jsessionid=C889D631CDFDEF7D58316A07ACE876A7.d03t03 CCarbide-Derived Carbons – From Porous Networks to Nanotubes and Graphene], 9 FEB 2011,DOI: 10.1002/adfm.201002094, WILEY-VCH</ref><ref>Y. Korenblit,  M. Rose, E. Kockrick, L. Borchardt, A. Kvit, St. Kaskel, G. Yushin, [http://www.nano-tech.gatech.edu/ACS_NANO_preprint.pdf High-Rate Electrochemical Capacitors Based on Ordered Mesoporous Silicon Carbide-Derived Carbon]</ref>
 
Carbide-derived carbons can exhibit high surface area and tunable pore diameters to maximize ion confinement, increasing pseudocapacitance by faradaic {{chem|H|2}} adsorption treatment. Structurally, CDC pore sizes range from micropores to mesopores. Capacitance may be increased by using micropores. Sub-1&nbsp;nm pores contribute to capacitance even if the solvated ions are larger. This capacitance increase is explained by the distortion of the ion-solvating shell. As pore size approaches the solvation shell size, solvent molecules are excluded and de-solvated ions fill the pores, increasing ionic packing density and storage capability by faradaic {{chem|H|2}} intercalation. CDC electrodes with tailored pore design offer as much as 75% greater energy density than conventional activated carbons.
 
In 2013 a CDC supercapacitor offered an energy density of 8.3&nbsp;Wh/kg having 4,000&nbsp;F capacitance and one million charge/discharge cycles.<ref>{{cite web|url=http://skeletontech.com/products/ultracapacitors/ |title=SkelCap Ultracapacitors &#124; Skeleton Technologies |publisher=Skeletontech.com |date= |accessdate=2013-05-29}}</ref>
 
====Graphene====
[[File:Graphen.jpg|thumb|150px|Graphene is an [[Chicken wire (chemistry)|atomic-scale honeycomb lattice]] made of carbon atoms.]]
[[Graphene]] is a one-atom thick sheet of [[graphite]], with atoms arranged in a regular hexagonal pattern,<ref>Nano Letters, J. J. Yoo, K. Balakrishnan,  J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. M. Reddy, J. Yu, R. Vajtai, P. M. Ajayan, [http://www.owlnet.rice.edu/~rv4/Ajayan/planar.pdf Ultrathin Planar Graphene Supercapacitors]</ref> also called "nanocomposite paper".<ref>Michael Mullaney, Rensselaer Polytechnic Institute, 3-Aug-2007, [http://www.eurekalert.org/pub_releases/2007-08/rpi-bbs080907.php Beyond batteries: Storing power in a sheet of paper]</ref>
 
Graphene has a surface area of 2630&nbsp;m<sup>2</sup>/g which can lead theoretically to a capacitor of 550&nbsp;F/g. Its important advantage is high conductivity >1700 S/m compared to activated carbon (10 to 100&nbsp;S/m). {{As of|2012}} a new development used graphene sheets directly as electrodes without collectors for portable applications.<ref name="PhysOrg">PhysOrg, Jennifer Marcus, March 15, 2012 , [http://phys.org/news/2012-03-graphene-supercapacitor-portable-electronics.html Researchers develop graphene supercapacitor holding promise for portable electronics]</ref><ref>{{cite doi|10.1126/science.1216744}}</ref>
 
One graphene-based supercapacitor uses curved graphene sheets that do not stack face-to-face, forming mesopores that are accessible to and wettable by environmentally friendly ionic electrolytes at voltages up to 4&nbsp;V. They have a specific energy density of {{val|85.6|u=W·h/kg}} at room temperature equaling that of a conventional [[nickel metal hydride battery]], but with 100-1000 times greater power density.<ref name="Bor Jang">[http://physicsworld.com/cws/article/news/2010/nov/26/graphene-supercapacitor-breaks-storage-record physicsworld.com Graphene supercapacitor breaks storage record]</ref><ref name="Dume">{{cite journal |title=Graphene-Based Supercapacitor with an Ultrahigh Energy Density |first1=Chenguang |first5=Bor Z. |last1=Liu |first2=Zhenning |last5=Jang |last2=Yu |first4=Aruna |last4=Zhamu |first3=Bor Z.  |last3=Jang |journal=Nano Letters |year=2010 |volume=10 |issue=12 |pages=4863–4868 |doi=10.1021/nl102661q |publisher=American Chemical Society|bibcode = 2010NanoL..10.4863L }}</ref>
 
The two-dimensional structure of graphene improves charging and discharging. Charge carriers in vertically oriented sheets can quickly migrate into or out of the deeper structures of the electrode, thus increasing currents. Such capacitors may be suitable for 100/120&nbsp;Hz filter applications, which are unreachable for supercapacitors using other carbons.<ref name="100 Hz filtering">John R. Miller, R. A. Outlaw, B. C. Holloway, [http://www.sciencemag.org/content/329/5999/1637.abstract Graphene Double-Layer Capacitor with ac Line-Filtering Performance], Science 24 September 2010, Vol. 329 no. 5999 pp. 1637-1639, DOI: 10.1126/science.1194372</ref>
 
{{As of|2013}} graphene can be produced in various labs, but is not available in production quantities.<ref>ScienceDaily (Sep. 17, 2008), [http://www.sciencedaily.com/releases/2008/09/080916143910.htm Breakthrough In Energy Storage: New Carbon Material Shows Promise Of Storing Large Quantities Of Renewable Electrical Energy]</ref>
 
====Carbon nanotubes====
[[File:Chiraltube.gif|thumb|right|A [[scanning tunneling microscopy]] image of single-walled carbon nanotube]]
[[Carbon nanotube]]s (CNTs), also called buckytubes,  are [[carbon]] [[molecule]]s with a [[cylindrical]] [[nanostructure]]. They have a hollow structure with walls formed by one-atom-thick sheets of graphene. These sheets are rolled at specific and discrete ("[[Chirality|chiral]]") angles, and the combination of chiral angle and radius controls properties such as electrical conductivity, electrolyte wettability and ion access. Nanotubes are categorized as single-walled nanotubes (SWNTs) or multi-walled nanotubes (MWNTs). The latter have one or more outer tubes successively enveloping a SWNT, much like the Russian [[matroyska doll]]s. SWNTs have diameters ranging between 1 and 3&nbsp;nm. MWNTs have thicker [[coaxial]] walls, separated by spacing (0.34&nbsp;nm) that is close to graphene's interlayer distance.
 
Nanotubes can grow vertically on the collector substrate, such as a silicon wafer. Typical lengths are 20 to 100&nbsp;µm.<ref>S. Akbulut, August, 2011, Graduate School of Vanderbilt University, Nashville, Tennessee, [http://etd.library.vanderbilt.edu/available/etd-07262011-155004/unrestricted/serkanakbulut.pdf OPTIMIZATION OF CARBON NANOTUBE SUPERCAPACITOR ELECTRODE]</ref>
 
Carbon nanotubes can greatly improve capacitor performance, due to the highly wettable surface area and high conductivity.<ref name="Arepalli">{{Cite journal|last=Arepalli|first=S.|coauthors=H. Fireman, C. Huffman, P. Moloney, P. Nikolaev, L. Yowell, C.D. Higgins, K. Kim, P.A. Kohl, S.P. Turano, and W.J. Ready|title=Carbon-Nanotube-Based Electrochemical Double-Layer Capacitor Technologies for Spaceflight Applications|journal=JOM|year=2005|pages=24–31 |url=http://eosl.gtri.gatech.edu/Portals/2/4.pdf}}</ref><ref name=Signorelli>Signorelli, R. et al. "Electrochemical Double-Layer Capacitors Using Carbon Nanotube Electrode Structures." MIT Open Acces Articles, Proceedings of the IEEE 97.11 (2009): 1837–1847. © 2009 IEEE, [http://dx.doi.org/10.1109/jproc.2009.2030240] {{cite doi|10.1109/jproc.2009.2030240}}, Citable URI:[http://hdl.handle.net/1721.1/54729], [http://dspace.mit.edu/handle/1721.1/54729]</ref>
 
CNTs can store about the same charge as activated carbon per unit surface area, but nanotubes' surface is arranged in a regular pattern, providing greater wettability. SWNTs have a high theoretical specific surface area of 1315&nbsp;m<sup>2</sup>/g, while MWNTs' SSA is lower and is determined by the diameter of the tubes and degree of nesting, compared with a surface area of about 3000 m<sup>2</sup>/g of activated carbons. Nevertheless, CNTs have higher capacitance than activated carbon electrodes, e.g., 102&nbsp;F/g for MWNTs and 180&nbsp;F/g for SWNTs.<ref>Wen Lu, ADA Technologies Inc,  [http://cdn.intechopen.com/pdfs/10024/InTech-Carbon_nanotube_supercapacitors.pdf Carbon Nanotube Supercapacitors]</ref>
 
MWNTs have mesopores that allow for easy access of ions at the electrode/electrolyte interface. As the pore size approaches the size of the ion solvation shell, the solvent molecules are partially stripped, resulting in larger ionic packing density and increased faradaic storage capability. However, the considerable volume change during repeated intercalation and depletion decreases their mechanical stability. To this end, research to increase surface area, mechanical strength, electrical conductivity and chemical stability is ongoing.<ref name="Arepalli" /><ref name="Conway-Birss">B. E. Conway, V. Birss, J. Wojtowicz, [http://www.sciencedirect.com/science/article/pii/S0378775396024743 The role and the utilization of pseudocapacitance for energy storage by supercapacitors], Journal of Power Sources, Volume 66, Issues 1–2, May–June 1997, Pages 1–14</ref><ref>{{Cite journal|last=Dillon|first=A.C.|title=Carbon Nanotubes for Photoconversion and Electrical Energy Storage|journal=Chem. Rev.|year=2010|volume=110|pages=6856–6872|doi=10.1021/cr9003314|pmid=20839769|issue=11}}</ref><ref name="Jian Li">Jian Li, Xiaoqian Cheng, Alexey Shashurin, Michael Keidar, [http://www.scirp.org/journal/PaperInformation.aspx?paperID=21272 Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene], Graphene, 2012, 1, 1-13, DOI: 10.4236/graphene.2012.11001</ref>
 
===Electrodes for pseudocapacitors===
Pseudocapacitance with faradaic charge transfer also is always present in carbon double-layer electrodes. But the amount of pseudocapacitance in EDLC electrodes is relatively low.  Pseudocapacitance electrodes have surfaces able to achieve sufficient faradaic processes to have a predominate amount of pseudocapacitance. Pseudocapacitance electrodes without double-layer capacitance doesn't exist.
 
====Metal Oxides====
B. E. Conway's research<ref name="conway1"  /><ref name="Conway Transition" /> described electrodes of transition metal oxides that exhibited high amounts of pseudocapacitance. Oxides of transition metals including [[ruthenium]] ({{chem|RuO|2}}), [[iridium]] ({{chem|IrO|2}}), [[iron]] ({{chem|Fe|3|O|4}}), [[manganese]] ({{chem|MnO|2}}) or sulfides such as [[titanium sulfide]] ({{chem|TiS|2}}) alone or in combination generate strong faradaic electron–transferring reactions combined with low resistance.<ref>M. Jayalakshmi, K. Balasubramanian, [http://www.electrochemsci.org/papers/vol3/3111196.pdf Simple Capacitors to Supercapacitors - An Overview], Int. J. Electrochem. Sci., 3 (2008) 1196 – 1217,</ref> Ruthenium dioxide in combination with {{chem|H|2|SO|4}} electrolyte provides specific capacitance of 720&nbsp;F/g and a high energy density of 26.7&nbsp;Wh/kg.<ref>J. P. Zheng, P. J. Cygan, T. R. Jow, [http://jes.ecsdl.org/content/142/8/2699.abstract Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors], ECS, February 8, 1995</ref>
 
Charge/discharge takes place over a window of about 1.2&nbsp;V per electrode. This pseudocapacitance of about 720&nbsp;F/g is roughly 100 times higher than for double-layer capacitance using activated carbon electrodes. These transition metal electrodes offer excellent reversibility, with several hundred-thousand cycles. However, ruthenium is expensive and the 2,4&nbsp;V voltage window for this capacitor limits their applications to military and space applications.
 
Less expensive oxides of iron, vanadium, nickel and cobalt have been tested in aqueous electrolytes, but none has been investigated as much as manganese dioxide ({{chem|MnO|2}}). However, none of these oxides are in commercial use.<ref name="Simon-Gogotsi">P. Simon, Y.Gogotsi,  [http://www.ifc.dicp.ac.cn/library/cailiao/pdf1/Materials%20for%20electrochemical%20capacitors.pdf Materials for electrochemical capacitors,  nature materials], VOL 7, NOVEMBER 2008</ref>
 
====Conductive polymers====
Another approach uses electron-conducting polymers as pseudocapacitive material. Although mechanically weak, [[conductive polymer]]s have high [[Electrical resistivity and conductivity|conductivity]], resulting in a low ESR and a relatively high capacitance. Such conducting polymers include [[polyaniline]], [[polythiophene]], [[polypyrrole]] and [[polyacetylene]]. Such electrodes employ also electrochemical doping or dedoping of the polymers with anions and cations. Electrodes out of or coated with conductive polymers are cost comparable to carbon electrodes.
 
Conducting polymer electrodes generally suffer from limited cycling stability.<ref name="Volfkovich" /> However, [[Acene|polyacene]] electrodes provide up to 10,000 cycles, much better than batteries.<ref>[http://media.digikey.com/pdf/Data%20Sheets/Taiyo%20Yuden%20PDFs%20URL%20links/PAS%20Coin%20Type%20Capacitor.pdfCoin type PAS capacitor], Taiyo Yuden, Shoe Electronics Ltd.</ref>
 
===Electrodes for hybrid capacitors===
All commercial hybrid supercapacitors are asymmetric. They combine an electrode with high amount of [[pseudocapacitance]] with an electrode with a high amount of [[double-layer capacitance]]. In such systems the faradaic pseudocapacitance electrode with their higher capacitance provides high [[energy density]] while the non-faradaic EDLC electrode enables high [[power density]]. An advantage of the hybride-type supercapacitors compared with symmetrical EDLC’s is their higher specific capacitance value as well as their higher rated voltage and correspondingly their higher specific energy.<ref>Yu.M. Volfkovich, [http://cdn.intechopen.com/pdfs/26963/InTech-Studies_of_supercapacitor_carbon_electrodes_with_high_pseudocapacitance.pdf Studies of Supercapacitor Carbon Electrodes with High Pseudocapacitance]</ref>
 
====Composite electrodes====
Composite electrodes for hybrid-type supercapacitors are constructed from carbon-based material with incorporated or deposited pseudocapacitive active materials like metal oxides and conducting polymers. {{As of|2013}} most research for supercapacitors explores composite electrodes.
 
CNTs give a backbone for a homogeneous distribution of metal oxide or electrically conducting polymers (ECPs), producing good pseudocapacitance and good double-layer capacitance. These electrodes achieve higher capacitances than either pure carbon or pure metal oxide or polymer-based electrodes. This is attributed to the accessibility of the nanotubes' tangled mat structure, which allows a uniform coating of pseudocapacitive materials and three-dimensional charge distribution.
 
Another way to enhance CNT electrodes is by doping with a pseudocapacitive dopant as in [[lithium-ion capacitor]]s. In this case the relatively small lithium atoms intercalate between the layers of carbon.<ref>H. Gualous et al.: ''[http://hal.archives-ouvertes.fr/docs/00/37/31/49/PDF/ESSCAP2008_Venet_2.pdf Lithium Ion capacitor characterization and modelling]'' ESSCAP’08 −3rd European Symposium on Supercapacitors and Applications, Rome/Italy 2008</ref> The anode is made of lithium-doped carbon, which enables lower negative potential with a cathode made of activated carbon. This results in a larger voltage of 3.8-4 V that prevents electrolyte oxidation. As of 2007 they had achieved capacitance of 550 F/g.<ref name="Schindall" /> and reach an energy density up to 14&nbsp;Wh/kg.<ref name=FDK>{{cite web|url=http://www.greencarcongress.com/2009/01/fdk-to-begin-ma.html |title=FDK To Begin Mass Production of High-Capacity Li-Ion Capacitors; Automotive and Renewable Energy Applications |publisher=Green Car Congress |date=2009-01-04 |accessdate=2013-05-29}}</ref>
 
====Battery-type electrodes====
Rechargeable battery electrodes influenced the development of electrodes for new hybrid-type supercapacitor electrodes as for [[lithium-ion capacitor]]s.<ref name="Nanohybrid">K. Naoi, W. Naoi, Sh. Aoyagi, J. Miyamoto,T. Kamino, [http://pubs.acs.org/doi/abs/10.1021/ar200308h New Generation "Nanohybrid Supercapacitor"], American Chemical Society, Chem. Res., Article ASAP, DOI: 10.1021/ar200308h, March 20, 2012</ref> Together with an carbon EDLC electrode in an asymmetric construction offers this configuration higher energy density than typical supercapacitors with higher power density, longer cycle life and faster charging and recharging times than batteries.
 
While their structure qualifies them as composite electrodes, they are typically placed in the category of composite electrodes.
 
====Asymmetric electrodes (Pseudo/EDLC)==== 
Recently some asymmetric hybrid supercapacitors were developed in which the positive electrode where based on a real pseudocapacitive metal oxides electrode (not acomposite electrode), and the negative electrode on an EDLC activated carbon electrode.
 
An advantage of this type of supercapacitors is their higher voltage and correspondingly their higher specific energy (up to 10-20&nbsp;Wh/kg).<ref>Yu.M. Volfkovich, Studies of Supercapacitor Carbon Electrodes with High Pseudocapacitance [http://cdn.intechopen.com/pdfs/26963/InTech-Studies_of_supercapacitor_carbon_electrodes_with_high_pseudocapacitance.pdf PDF]</ref>
 
As far as known no commercial offered supercapacitors with such kind of asymmetric electrodes are on the market.
 
===Electrolytes===
 
[[Electrolyte]]s consist of a [[solvent]] and  [[Dissolution (chemistry)|dissolved]] [[Chemical substance|chemicals]] that dissociate into positive [[cation]]s and negative [[anion]]s, making the electrolyte electrically conductive. The more ions the electrolyte contains, the better its [[Conductivity (electrolytic)|conductivity]]. In supercapacitors electrolytes are the electrically conductive connection between the two electrodes. Additionally, in supercapacitors the electrolyte provides the molecules for the separating monolayer in the Helmholtz double-layer and delivers the ions for pseudocapacitance.
 
The electrolyte determines the capacitor's characteristics: its operating voltage, temperature range, ESR and capacitance. With the same activated carbon electrode an aqueous electrolyte achieves capacitance values of 160&nbsp;F/g, while an organic electrolyte achieves only 100&nbsp;F/g.<ref name="Simon-Burke">P. Simon, A. Burke, [http://www.electrochem.org/dl/interface/spr/spr08/spr08_p38-43.pdf Nanostructured Carbons: Double-Layer Capacitance and More]</ref>
 
The electrolyte must be chemically inert and not chemically attack the other materials in the capacitor to ensure long time stable behavior of the capacitor’s electrical parameters. The electrolyte's viscosity must be low enough to wet the porous, sponge-like structure of the electrodes. An ideal electrolyte does not exist, forcing a compromise between performance and other requirements.
 
====Aqueous====
[[Water]] is a relatively good solvent for [[Inorganic chemistry|inorganic]] chemicals. Treated with [[acid]]s such as [[sulfuric acid]] ({{chem|H|2|SO|4}}), [[alkali]]s such as [[potassium hydroxide]] (KOH), or [[salt]]s such as quaternary [[phosphonium]] salts, [[sodium perchlorate]] ({{chem|NaClO|4}}), [[lithium perchlorate]] ({{chem|LiClO|4}}) or lithium hexafluoride [[arsenate]] ({{chem|LiAsF|6}}), water offers relatively high conductivity values of about 100 to 1000&nbsp;m[[Siemens (unit)|S]]/cm. Aqueous electrolytes have a dissociation voltage of 1.15&nbsp;V per electrode (2,3&nbsp;V capacitor voltage) and a relatively low [[operating temperature]] range. They are used in supercapacitors with low energy density and high power density.
 
====Organic====
Electrolytes with [[Organic chemistry|organic]] solvents such as [[acetonitrile]], [[propylene carbonate]], [[tetrahydrofuran]], [[diethyl carbonate]], [[γ-butyrolactone]] and solutions with quaternary [[ammonium salt]]s or alkyl ammonium salts such as tetraethylammonium [[tetrafluoroborate]] ({{chem|N(Et)|4|BF|4|}}<ref>
Tetraethylammonium tetrafluoroborate - Compound Summary{{PubChem|2724277}}</ref>)  or triethyl (metyl) tetrafluoroborate ({{chem|NMe(Et)|3|BF|4}}) are more expensive than aqueous electrolytes, but they have a higher dissociation voltage of typically 1.35&nbsp;V per electrode (2,7&nbsp;V capacitor voltage), and a higher temperature range. The lower electrical conductivity of organic solvents (10 to 60&nbsp;S/cm) leads to a lower power density, but since the energy density increases with the square of the voltage, a higher energy density.
 
===Separators===
Separators have to physically separate the two electrodes to prevent a short circuit by direct contact. It can be very thin (a few hundredths of a millimeter) and must be very porous to the conducting ions to minimize ESR. Furthermore, separators must be chemically inert to protect the electrolyte's stability and conductivity. Inexpensive components use open capacitor papers. More sophisticated designs use nonwoven porous polymeric films like [[polyacrylonitrile]] or [[Kapton]], woven glass fibers or porous woven ceramic fibres.<ref>A. Schneuwly, R. Gallay, [http://www.garmanage.com/atelier/root/public/Contacting/biblio.cache/PCIM2000.pdf Properties and applications of supercapacitors, From the state-of-the-art to future trends], PCIM 2000</ref><ref>A. Laforgue et al. [http://www.emc-mec.ca/ev2011ve/proceedings/EV2011VE26EES4_Lucie%20Robitaille.pdf Development of New Generation Supercapacitors for Transportation Applications]</ref>
 
===Collectors and housing===
Current collectors connect the electrodes to the capacitor’s terminals. The collector is either sprayed onto the electrode or is a metal foil. They must be able to distribute peak currents of up to 100&nbsp;A.
 
If the housing is made out of a metal (typically aluminum) the collectors should be made from the same material to avoid forming a corrosive [[galvanic cell]].
 
==Electrical parameters==
 
===Capacitance===
[[File:Superkondensator-Porenmodell-engl.png|thumb|right|Schematic illustration of the capacitance behavior resulting out of the porous structure of the electrodes]]
[[File:Supercapacitor-Equi-Circuit.png|thumb|Equivalent circuit with cascaded RC elements]]
[[File:EDLC-Cap-Frequency-dependent.png|thumb|right| Frequency depending of the capacitance value of a 50&nbsp;F supercapacitor]]
 
Capacitance values for commercial capacitors are specified as "rated capacitance C<sub>R</sub>". This is the value for which the capacitor has been designed. The value for an actual component must be within the limits given by the specified tolerance. Typical values are in the range of [[farad]]s (F), three to six [[orders of magnitude]] larger than those of electrolytic capacitors.
 
The capacitance value results from the energy W of a loaded capacitor loaded via a [[Direct current|DC]] voltage V<sub>DC</sub>.
 
:<math>W=\frac{1}{2}\cdot C_\text{DC} \cdot V_\text{DC}^2 </math>
 
This value is also called the "DC capacitance".
 
====Measurement====
Conventional capacitors are normally measured with a small [[Alternating current|AC]] voltage (0.5&nbsp;V) and a frequency of 100&nbsp;Hz or 1&nbsp;kHz depending on the capacitor type. The AC capacitance measurement offers fast results, important for industrial production lines. The capacitance value of a supercapacitor depends strongly on the measurement frequency, which is related to the porous electrode structure and thelimited electrolyte's ion mobility. Even at a low frequency of 10&nbsp;Hz, the measured capacitance value drops from 100 to 20 percent of the DC capacitance value.
 
This extraordinary strong frequency dependence can be explained by the different distances the ions have to move in the electrode's pores. The area at the beginning of the pores can easily be accessed by the ions. The short distance is accompanied by low electrical resistance. The greater the distance the ions have to cover, the higher the resistance. This phenomenon can be described with a series circuit of cascaded RC (resistor/capacitor) elements with serial RC [[time constant]]s. These result in delayed current flow, reducing the total electrode surface area that can be covered with ions if polarity changes – capacitance decreases with increasing AC frequency. Thus, the total capacitance is only achieved after longer measuring times.
 
[[File:EDLC-Capacitance-measuring.png|thumb|right|Illustration of the measurement conditions for measuring the capacitance of supercapacitors]]
 
Out of the reason of the very strong frequency dependence of the capacitance this electrical parameter has to be measured with a special constant current charge and discharge measurement, defined in [[International Electrotechnical Commission|IEC]] standards 62391-1 and -2.
 
Measurement starts with charging the capacitor. The voltage has to be applied and after the constant current/constant voltage power supply has achieved the rated voltage, the capacitor has to be charged for 30 minutes. Next, the capacitor has to be discharged with a constant discharge current I<sub>discharge</sub>. Than the time t<sub>1</sub> and t<sub>2</sub>, for the voltage to drop from 80% (V<sub>1</sub>) to 40% (V<sub>2</sub>) of the rated voltage is measured. The capacitance value is calculated as:
 
:<math>C_\text{total} = I_\text{discharge} \cdot \frac{t_2-t_1}{V_1-V_2}</math>
 
The value of the discharge current is determined by the application. The IEC standard defines four classes:
 
* Class 1, Memory backup, discharge current in mA = 1 • C (F)
* Class 2, Energy storage, discharge current in mA = 0,4 • C (F) • V (V)
* Class 3, Power, discharge current in mA = 4 • C (F) • V (V)
* Class 4, Instantaneous power, discharge current in mA = 40 • C (F) • V (V)
 
The measurement methods employed by individual manufacturers are mainly comparable to the standardized methods.<ref>[http://www.capcomp.de/fileadmin/document_download/NESSCAP_Tech-Info/NESSCAP_Tech_Guide_2008.pdf ''NESSCAP ULTRACAPACITOR - TECHNICAL GUIDE''] NESSCAP Co., Ltd. 2008</ref><ref name="maxwell_Product Guide">Maxwell BOOSTCAP [http://www.maxwell.com/products/ultracapacitors/docs/1014627_BOOSTCAP_PRODUCT_GUIDE.PDF ''Product Guide – Maxwell Technologies BOOSTCAP Ultracapacitors– Doc. No. 1014627.1''] Maxwell Technologies, Inc. 2009</ref>
 
The standardized measuring method is too time consuming for manufacturers to use during production for each individual component. For industrial produced capacitors the capacitance value is instead measured with a faster low frequency AC voltage and a correlation factor is used to compute the rated capacitance.
 
This frequency dependence affects capacitor operation. Rapid charge and discharge cycles mean that neither the rated capacitance value nor energy density are available. In this case the rated capacitance value is recalculated for each application condition.
 
===Operating voltage===
[[File:OneFarad5.5Velectrolyticcapacitor.jpg|thumb|right|A supercapacitor with 5.5 volts is constructed out of two single cells 2.25 volt each in series connection]]
Supercapacitors are low voltage components. Safe operation requires that the voltage remain within specified limits. The rated voltage U<sub>R</sub> is the maximum DC voltage or peak pulse voltage that may be applied continuously and remain within the specified temperature range. Capacitors should never be subjected to voltages continuously in excess of the rated voltage.
 
The rated voltage includes a safety margin against the electrolyte's [[breakdown voltage]] at which the electrolyte [[Chemical decomposition|decomposes]]. The breakdown voltage decompose the separating solvent molecules in the Helmholtz double-layer, f. e.  [[water]] splits into [[hydrogen]] and [[oxide]]. The solvent molecules then cannot separate the electrical charges from each other. Higher voltages than rated voltage cause hydrogen gas formation or a short circuit.
 
Standard supercapacitors with aqueous electrolyte normally are specified with a rated voltage of 2.1 to 2.3&nbsp;V and capacitors with organic solvents with 2.5 to 2.7&nbsp;V. [[Lithium-ion capacitor]]s with doped electrodes may reach a rated voltage of 3.8 to 4&nbsp;V, but have a lower voltage limit of about 2.2&nbsp;V.
 
Operating supercapacitors below the rated voltage improves the long-time behavior of the electrical parameters. Capacitance values and internal resistance during cycling are more stable and lifetime and charge/discharge cycles may be extended.<ref name="maxwell_Product Guide" />
 
Supercapacitors rated voltages are generally lower than applications require. Higher application voltages require connecting cells in series. Since each component has a slight difference in capacitance value and ESR, it is necessary to actively or passively balance them to stabilizes the applied voltage. Passive balancing employs [[resistor]]s in parallel with the supercapacitors. Active balancing may include electronic voltage management above a threshold that varies the current.
 
===Internal resistance===
[[File:EDLC-Internal-resistance-measuring.png|thumb|right|The internal DC resistance can be calculated out of the voltage drop obtained from the intersection of the auxiliary line extended from the straight part and the time base at the time of discharge start]]
 
Charging/discharging a supercapacitor is connected to the movement of charge carriers (ions) in the electrolyte across the separator to the electrodes and into their porous structure. Losses occur during this movement that can be measured as the internal DC resistance.
 
With the electrical model of cascaded, series-connected RC (resistor/capacitor) elements in the electrode pores, the internal resistance increases with the increasing penetration depth of the charge carriers into the pores. The internal DC resistance is time dependent and increases during charge/discharge. In applications often only the switch-on and switch-off range is interesting. The internal resistance R<sub>i</sub> can be calculated from the voltage drop ΔV<sub>2</sub> at the time of discharge, starting with a constant discharge current I<sub>discharge</sub>. It is obtained from the intersection of the auxiliary line extended from the straight part and the time base at the time of discharge start (see picture right). Resistance can be calculated by:
:<math> R_\text{i}= \frac{\Delta V_2}{I_\text{discharge}}</math>
The discharge current I<sub>discharge</sub> for the measurement of internal resistance can be taken from the classification according to IEC 62391-1.
 
This internal DC resistance R<sub>i</sub> should not be confused with the internal AC resistance called [[Equivalent Series Resistance]] (ESR) normally specified for capacitors. It is measured at 1&nbsp;kHz. ESR is much smaller than DC resistance. ESR is not relevant for calculating superconductor inrush currents or other peak currents.
 
R<sub>i</sub> determines several supercapacitor properties. It limits the charge and discharge peak currents as well as charge/discharge times. R<sub>i</sub> and the capacitance C results in the [[time constant]] <math>\tau</math>
:<math>\tau = R_\text{i} \cdot C</math>
This time constant determines the charge/discharge time. A 100&nbsp;F capacitor with an internal resistance of 30&nbsp;mΩ for example, has a time constant of 0.03 • 100 = 3&nbsp;s. After 3 seconds charging with a current limited only by internal resistance, the capacitor has 62.3% of full charge (or is discharged to 36.8% of full charge).
 
Standard capacitors with constant internal resistance fully charge during about 5&nbsp;τ. Since internal resistance increases with charge/discharge, actual times cannot be calculated with this formula. Thus, charge/discharge time depends on specific individual construction details.
 
===Current load and cycle stability===
Because supercapacitors operate without forming chemical bonds, current loads, including charge, discharge and peak currents are not limited by reaction constraints. Current load and cycle stability can be much higher than for rechargeable batteries. Current loads are limited only by internal resistance, which may be substantially lower than for batteries.
 
Internal resistance "R<sub>i</sub>" and charge/discharge currents or peak currents "I" generate internal heat losses "P<sub>loss</sub>" according to:
 
:<math>P_\text{loss} = R_\text{i} \cdot I^2</math>
 
This heat must be released and distributed to the ambient environment to maintain operating temperatures below the specified maximum temperature.
 
Heat generally defines capacitor lifetime because of electrolyte diffusion. The heat generation coming from current loads should be smaller than 5 to 10&nbsp;[[Kelvin|K]] at maximum ambient temperature (which has only minor influence on expected lifetime). For that reason the specified charge and discharge currents for frequent cycling are determined by internal resistance.
 
The specified cycle parameters under maximal conditions include charge and discharge current, pulse duration and frequency. They are specified for a defined temperature range and over the full voltage range for a defined lifetime. They can differ enormously depending on the combination of electrode porosity, pore size and electrolyte. Generally a lower current load increases capacitor life and increases the number of cycles. This can be achieved either by a lower voltage range or slower charging and discharging.<ref name="maxwell_Product Guide" />
 
Supercapacitors (except those with polymer electrodes) can potentially support more than one million charge/discharge cycles without substantial capacity drops or internal resistance increases. Beneath the higher current load is this the second great advantage of supercapacitors over batteries. The stability results from the dual electrostatic and electrochemical storage principles.
 
The specified charge and discharge currents can be significantly exceeded by lowering the frequency or by single pulses. Heat generated by a single pulse may be spread over the time until the next pulse occurs to ensure a relatively small average heat increase. Such a "peak power current" for power applications for supercapacitors of more than 1000&nbsp;F can provide a maximum peak current of about 1000&nbsp;A.<ref>Maxwell, [http://www.maxwell.com/products/ultracapacitors/docs/datasheet_k2_series_1015370.pdf K2 series]</ref>  Such high currents generate high thermal stress and high electromagnetic forces that can damage the electrode-collector connection requiring robust design and construction of the capacitors.
 
=== Energy density and power density ===
 
[[File:Supercapacitors-vs-batteries-chart.png|thumb|right|[[Ragone chart]] showing power density vs. energy density of various capacitors and batteries]]
 
Supercapacitors occupy the gap between high power/low energy [[electrolytic capacitor]]s and low power/high energy rechargeable [[Rechargeable batteries|batteries]]. The amount of energy stored in a supercapacitor is called [[specific energy]]. The energy W<sub>max</sub> of a capacitor is given by the formula
 
: <math>W_\text{max}=\frac{1}{2}\cdot C_\text{total} \cdot V_\text{loaded}^2</math>
 
This formula describes the amount of energy stored and is often used to describe new research successes. However, only part of the stored energy is available to applications, because the voltage drop and the time constant over the internal resistance mean that some of the stored charge is inaccessible. The effective realized amount of energy W<sub>eff</sub> is reduced by the used voltage difference between V<sub>max</sub> and V<sub>min</sub> and can be represented as:<ref name="Wen Lu">Wen Lu, [http://cdn.intechopen.com/pdfs/10024/InTech-Carbon_nanotube_supercapacitors.pdf Carbon Nanotube Supercapacitors]</ref>
 
: <math>W_\text{eff}=\frac{1}{2}\ C \cdot\ ( V_\text{max}^2 - V_\text{min}^2 )</math>
 
This formula also represents the energy asymmetric voltage components such as lithium ion capacitors.
 
[[Energy density]] is either measured  [[Gravimetry|gravimetrically]] (per unit of [[mass]]) in [[Watt-hour per kilogram|watt-hours per kilogram]] (Wh/kg) or [[volume]]trically (per unit of volume) in watt-hours per [[litre]] (Wh/l).
 
{{As of|2013}} commercial gravimetric energy densities range from around 0.5 to {{val|15|u=Wh/kg}}. For comparison, an aluminum electrolytic capacitor stores typically 0.01 to {{val|0.3|u=Wh/kg}}, while a conventional [[lead-acid battery]] stores typically 30 to {{val|40|u=Wh/kg}} and modern [[lithium-ion battery|lithium-ion batteries]] 100 to {{val|265|u=Wh/kg}}. Supercapacitors can therefore store 10 to 100 times more energy than electrolytic capacitors, but only one tenth as much as batteries.
 
Although the energy densities of supercapacitors are insufficient compared with batteries the capacitors have an important advantage, the [[power density]]. Power density describes the speed at which energy can be delivered to/absorbed from the [[Electrical load|load]]. The maximum power P<sub>max</sub> is given by the formula:<ref name="Wen Lu" />
 
: <math>P_\text{max}=\frac{1}{4}\cdot\frac{V^2}{R_i} </math>
 
with V = voltage applied and R<sub>i</sub>, the internal DC resistance.
 
Power density is measured either gravimetrically in kilowatts per kilogram (kW/kg) or volumetrically in kilowatts per [[litre]] (kW/l).
 
The described maximum power P<sub>max</sub> specifies the power of a theoretical rectangular single maximum current peak of a given voltage. In real circuits the current peak is not rectangular and the voltage is smaller, caused by the voltage drop. IEC 62391–2 established a more realistic effective power P<sub>eff</sub> for supercapacitors for power applications:
 
: <math>P_\text{eff}=\frac{1}{8}\cdot\frac{V^2}{R_i} </math>
 
Supercapacitor power density is typically 10 to 100 times greater than for batteries and can reach values up to 15&nbsp;kW/kg.
 
[[Ragone chart]]s relate energy to power and are a valuable tool for characterizing and visualizing energy storage components. With such a diagram, the position of power density and energy density of different storage technologies is easily to compare, see diagram.<ref>T. Christen and C. Ohler. [http://www.sciencedirect.com/science/article/pii/S0378775302002288 Optimizing energy storage components using Ragone plots]. J. Power Sources 110, 107 (2002)</ref><ref>D. Dunn-Rankin, E. Martins Leal, and D.C. Walther. [http://www.sciencedirect.com/science/article/pii/S0360128505000262 Personal power systems]. Prog. Energy Combust. Sci. 31, 422 (2005).</ref>
 
===Lifetime===
[[File:EDLC-Life time curves.png|thumb|right|The lifetime of supercapacitors depends mainly on the capacitor temperature and the voltage applied]]
 
Supercapacitors exhibit a much longer [[Service life|lifetime]] than batteries. Since supercapacitors do not rely on chemical changes in the electrodes (except for those with polymer electrodes) lifetimes depend mostly on the rate of evaporation of the liquid electrolyte. This evaporation in general is a function of temperature, of current load, current cycle frequency and voltage. Current load and cycle frequency generate internal heat, so that the evaporation-determining temperature is the sum of ambient and internal heat. This temperature is measurable as core temperature in the center of a capacitor body. The higher the core temperature the faster the evaporation and the shorter the lifetime.
 
Evaporation generally results in decreasing capacitance and increasing internal resistance. According to IEC/EN 62391-2 capacitance reductions of over 30% or internal resistance exceeding four times its data sheet specifications are considered "wear-out failures", implying that the component has reached end-of-life. The capacitors are operable, but with reduced capabilities. It depends on the application of the capacitors, whether the aberration of the parameters have any influence on the proper functionality or not.
 
Such large changes of electrical parameters specified in IEC/EN 62391-2 are usually unacceptable for high current load applications. Components that support high current loads use much smaller limits, e.g., 20% loss of capacitance or double the internal resistance.<ref name="maxwell_lifetime">Maxwell Application Note [http://www.maxwell.com/products/ultracapacitors/docs/APPLICATIONNOTE1012839_1.PDF ''APPLICATION NOTE - Energy Storage Modules Life Duration Estimation.''] Maxwell Technologies, Inc. 2007</ref> The narrower definition is important for such applications, since heat increases linearly with increasing internal resistance and the maximum temperature should not be exceeded. Temperatures higher than specified can destroy the capacitor.
 
The real application lifetime of supercapacitors, also called "[[service life]]", "life expectancy" or "load life", can reach 10 to 15 years or more at room temperature. Such long periods cannot be tested by manufacturers. Hence, they specify the expected capacitor lifetime at the maximum temperature and voltage conditions. The results are specified in datasheets using the notation "tested time (hours)/max. temperature (°C)", such as "5000&nbsp;h/65&nbsp;°C". With this value and a formula, lifetimes can be estimated for lower conditions.
 
Datasheet lifetime specification is tested by the manufactures using an [[accelerated aging]] test called "endurance test" with maximum temperature and voltage over a specified time. For a "zero defect" product policy during this test no wear out or total failure may occur.
 
The lifetime specification from datasheets can be used for estimation of expected lifetime according to conditions coming from the application. The "10-degrees-rule" used for electrolytic capacitors with non-solid electrolyte is used for those estimations and can be used for supercapacitors, too. This rule employs the [[Arrhenius equation]], a simple formula for the temperature dependence of reaction rates. For every 10&nbsp;°C reduction in operating temperature, the estimated life doubles.
 
:<math>L_x =L_0\cdot 2^\frac{T_0-T_x}{10}</math>
 
With
*L<sub>x</sub> = estimated lifetime
*L<sub>0</sub> = specified lifetime
*T<sub>0</sub> = upper specified capacitor temperature
*T<sub>x</sub> = actual operating temperature of the capacitor cell
 
Calculated with this formula, capacitors specified with 5000&nbsp;h at 65&nbsp;°C, have an estimated lifetime of 20,000&nbsp;h at 45&nbsp;°C.
 
Lifetimes are also dependent on the operating voltage, because the development of gas in the liquid electrolyte depends on the voltage. The lower the voltage the smaller the gas development and the longer the lifetime. No general formula relates voltage to lifetime. The voltage dependent curves shown from the picture are an empirical result from one manufacturer.
 
Life expectancy for power applications may be also limited by current load or number of cycles. This limitation has to be specified by the relevant manufacturer and is strongly type dependent.
 
===Self-discharge===
 
Storing electrical energy in the double-layer separates the charge carriers by distance within the pores by distances in the range of molecules. Over this short distance irregularities can occur, leading to a small exchange of charge carriers and gradual discharge. This self-discharge is called [[leakage current]]. Leakage depends on capacitance, voltage, temperature and the chemical stability of the electrode/electrolyte combination. At room temperature leakage is so low that it is specified as time to self-discharge. Supercapacitor self-discharge time is specified in hours, days or weeks. As an example, a 5.5&nbsp;V/1&nbsp;F Panasonic "Goldcapacitor" specifies a voltage drop at 20&nbsp;°C from 5.5&nbsp;V down to 3&nbsp;V in 600 hours (25 days or 3.6 weeks) for a double cell capacitor.<ref>Panasonic Electronic Devices CO., LTD.: ''[http://industrial.panasonic.com/www-data/pdf/ABC0000/ABC0000TE5.pdf Gold capacitors Characteristics data]'' In: Technical Guide of Electric Double Layer Capacitors, Edition 7.4, 2011)</ref>
 
===Polarity===
[[File:Polarität-EDLC-P1070160.JPG|thumb|right|A negative bar on the insulating sleeve indicates the cathode terminal of the capacitor]]
 
Although the anode and cathode of symmetric supercapacitors consist of the same material, theoretically supercapacitors have no true [[Electrical polarity|polarity]]. Normally catastrophic failure does not occur, however reverse-charging a supercapacitor lowers its capacity. It is recommended practice to maintain the polarity resulting from a formation of the electrodes during production. Asymmetric supercapacitors are inherently polar.
 
Supercapacitors may not be operated with reverse polarity, precluding AC operation.
 
A bar in the insulating sleeve identifies the cathode terminal in a polarized component.
 
The terms "anode" and "cathode" can lead to confusion, because the polarity changes depending on whether a component is considered as a generator or as a consumer. For an accumulator or a battery the cathode has a positive polarity (+) and the anode has negative polarity (-). For capacitors the cathode has negative polarity (-) and the anode has positive polarity (+). This requires special attention if supercapacitors are substituted or switched in parallel with batteries.
 
==Comparison of technical parameters==
 
===Component comparison===
 
Mixing electrodes and electrolytes yields a variety of components suitable for diverse applications. The development of low-ohmic electrolyte systems, in combination with electrodes with high pseudocapacitance, enable many more technical solutions.
 
The following table shows differences among capacitors of various manufacturers in capacitance range, cell voltage, internal resistance (ESR, DC or AC value) and volumetric and gravimetric energy density.
 
In the table, ESR refers to the component with the largest capacitance value of the respective manufacturer. Roughly, they divide supercapacitors into two groups. The first group offers greater ESR values of about 20 milliohms and relatively small capacitance of 0.1 to 470&nbsp;F. These are "double-layer capacitors" for memory back-up or similar applications. The second group offers 100 to 10,000&nbsp;F with a significantly lower ESR value under 1 milliohm. These components are suitable for power applications. A correlation of some supercapacitor series of different manufacturers to the various construction features is provided in Pandolfo and Hollenkamp.<ref name="Pandolfo"/>
 
{| class="wikitable centered"
|+ Electrical parameter of supercapacitor series of different manufacturers
|- class="hintergrundfarbe6"
! Manufacturer
! Series<br>name
! Capacitance<br>range<br>( F)
! Cell<br>voltage<br>(V)
! ESR-<br>at C<sub>max</sub><br>(mΩ)
! Volumetric<br>energy-<br>density<br>(Wh/dm<sup>3</sup>)
! Gravimetric<br>energy-<br>density<br>(Wh/kg)
! Remarks
|-
| APowerCap<ref>{{cite web|url=http://www.apowercap.com/?pg=18&lang=eng&rand=95679520 |title=APowerCap Technologies: Ultracapacitors and Solutions / Products |publisher=Apowercap.com |date= |accessdate=2013-05-29}}</ref> ||APowerCap||4…550||2.7||-  || - ||4.5||-
|-
| AVX<ref>[http://www.avx.com/docs/catalogs/bestcap.pdf AVX Kyocera,  BestCap]</ref> ||BestCap||0.068…0.56||3.6||-||0.13||-||Modules up to 16&nbsp;V
|-
| Cap-XX<ref>{{cite web|url=http://www.cap-xx.com/products/products.php |title=Products |publisher=Cap-xx.com |date= |accessdate=2013-05-29}}</ref>||Cap-XX||0.16…2.4||2.75…2.75||14||1.45||1.36||-
|-
| CDE<ref>{{cite web|url=http://www.cde.com/catalog/Ultracap/ |title=Ultracapacitors &#124; Cornell Dubilier Electronics, Inc |publisher=Cde.com |date= |accessdate=2013-05-29}}</ref>||Ultracapacitor||0,1…3000||2.7||0.29||7.7||6.0||-
|-
| Cooper<ref>{{cite web|url=http://www.cooperindustries.com/content/public/en/bussmann/electronics/products/powerstor_supercapacitors.html |title=PowerStor Supercapacitors |publisher=Cooperindustries.com |date=2011-08-31 |accessdate=2013-05-29}}</ref>
||PowerStor||0.1…400||2.5…2.7||4.5||5.7||-||-
|-
| Elna<ref>[http://www.elna.co.jp/en/capacitor/pdf/catalog_10_11_e.pdf Elna, DYNACAP]</ref>||DYNACAP<br>POWERCAP||0.047…300<br/>||2.5...3.6<br/>2.5||8.0<br/>3.0||5.4<br>5.3||-<br>-||-<br>-
|-
| Elton<ref name=Elton /> ||Supercapacitor||1800…10000||1.5||0.5||6.8||4.2|| Modules up to 29&nbsp;V
|-
| Evans<ref>{{cite web|url=http://www.evanscap.com/capattery.htm |title=Capattery |publisher=Evanscap.com |date= |accessdate=2013-05-29}}</ref>||Capattery||0.001…10||125||200||-||-||Hybrid capacitors
|-
| HCC<ref>{{cite web|url=http://www.hccenergy.com/en/products.asp |title=Conventional Type |publisher=Hccenergy.com |date= |accessdate=2013-05-29}}</ref>||HCAP||0.22…5000||2.7||15||10.6||-||Modules up to 45 V
|-
| FDK<ref>{{cite web|url=http://www.greencarcongress.com/2009/01/fdk-to-begin-ma.html |title=FDK To Begin Mass Production of High-Capacity Li-Ion Capacitors; Automotive and Renewable Energy Applications |publisher=Green Car Congress |date=2009-01-04 |accessdate=2013-05-29}}</ref><ref>{{cite web|url=http://www.afec.co.jp/product-e/lic.htm |title=About a Lithium-ion Capacitor |publisher=Afec.co.jp |date= |accessdate=2013-05-29}}</ref>
||EneCapTen||2000||4.0||-||25||14||LI-Ion-capacitors
|-
| Illinois<ref>{{cite web|url=http://www.illinoiscapacitor.com/products/super-capacitors.aspx |title=Supercapacitors &#124; Ultracapacitors &#124; Super Capacitor &#124; Double Layer &#124; EDLC &#124; Farad Capacitance &#124; Supercap &#124; energy harvesting |publisher=Illinoiscapacitor.com |date= |accessdate=2013-05-29}}</ref>  ||Supercapacitor||1…3500||2.3…2.7||0.29||7.6||5.9||-
|-
| Ioxus<ref>{{cite web|url=http://www.ioxus.com/products/ |title=Products |publisher=Ioxus |date= |accessdate=2013-05-29}}</ref>
||Ultracapacitor||100…3000<br/>220…1000||2.7<br/>2.3||0.26||7.8<br/>8.7||6.0<br/>6.4||-
|-
| JSR Micro<ref>{{cite web|url=http://www.jsrmicro.com/index.php/EnergyAndEnvironment/LithiumIonCapacitor/FormFactorsPropertie/ |title=JSR Micro / Materials Innovation |publisher=Jsrmicro.com |date= |accessdate=2013-05-29}}</ref>||Ultimo||1100…3300||3.8||1.2||20||12||Li-Ion-capacitors
|-
| Korchip<ref>{{cite web|url=http://www.korchip.com/html/eng/starcap_product.asp |title=welcome to KORCHIP |publisher=Korchip.com |date= |accessdate=2013-05-29}}</ref>||STARCAP||0.01…400||2.7||12||7.0||6.1||Modules up to 50 V
|-
| Liyuan<ref>{{cite web|url=http://www.cyliyuan.com/en/product1.asp |title=朝阳立塬新能源有限公司 |publisher=Cyliyuan.com |date= |accessdate=2013-05-29}}</ref>||Supercapacitor||1…400||2.5||10||4.4||4.6||-
|-
| LS Mtron<ref>{{cite web|url=http://www.lsmtron.com/product/product_view.asp?cate_code=74&kItem=3 |title=LS엠트론 |publisher=Lsmtron.com |date= |accessdate=2013-05-29}}</ref>||Ultracapacitor||100…3000||2.8||0.25||6.0||5.9||Modules up to 84&nbsp;V
|-
| Maxwell<ref>{{cite web|url=http://www.maxwell.com/ultracapacitors/ |title=Maxwell Technologies Ultracapacitors and Supercapacitors as a green, alternative energy resource |publisher=Maxwell.com |date= |accessdate=2013-05-29}}</ref>
||Boostcap||10…3000||2..2…2.7||0.29||7.8||6.0||Modules up to 125&nbsp;V
|-
| Murata<ref>{{cite web|url=http://www.murata.com/products/edlc/index.html |title=Electrical Double Layer Capacitor &#124; Products &#124; Murata Manufacturing Co., Ltd |publisher=Murata.com |date= |accessdate=2013-05-29}}</ref>||EDLC||0.35…0.7||2.1||30||0.8||-||-
|-
| NEC<ref>{{cite web|url=http://www.nec-tokin.com/english/product/dl_capacitor.html |title=Product > Product Catalog |publisher=Nec-tokin.com |date=2006-03-24 |accessdate=2013-05-29}}</ref>||Supercapacitor <br>LIC Capacitor||0.01…100 <br>1100…1200||2.7 <br>3.8||30,000<br>1.0||5.3-<br>-||4.2<br>-||-<br/>Li-Ion-capacitors
|-
| Nesscap<ref>{{cite web|url=http://www.nesscap.com/product/overview.jsp |title=Nesscap |publisher=Nesscap |date= |accessdate=2013-05-29}}</ref>||EDLC,<br>Pseudocapacitor||3…60<br>50…300||2.3<br>2.3||35<br>18||4.3<br>12.9||3,3<br>8.7||Modules up to 125&nbsp;V
|-
| Nichicon<ref>{{cite web|url=http://www.nichicon-us.com/english/products/evercap/list_f.htm |title=Electric Double Layer Capacitors "EVerCAP" |publisher=Nichicon-us.com |date= |accessdate=2013-05-29}}</ref>||EVerCAP||0,47…6000||2.5…2.7||2.2||6.9||4.0||-
|-
| NCC, ECC<ref>{{cite web|url=http://www.chemi-con.co.jp/e/catalog/dl.html |title=Nippon Chemi-Con Corporation / Electric Double Layer Capacitors™ |publisher=Chemi-con.co.jp |date= |accessdate=2013-05-29}}</ref>||DLCCAP||350…2300||2.5||1.2||5.9||4.1||Modules up to 15&nbsp;V
|-
| Panasonic<ref>{{cite web|url=http://industrial.panasonic.com/www-ctlg/ctlg/qABC0000_EU.html |title=Electric Double Layer Capacitor &#124; Passive Components &#124; Panasonic Industrial Devices Europe |publisher=Industrial.panasonic.com |date= |accessdate=2013-05-29}}</ref>||Goldcap||0.015…70||2.1…2.3||100||3.4||-||-
|-
| Samwha<ref>{{cite web|url=http://www.samwha.com/goodsProduct.html?f_search_type=all&f_com=SWEI&f_cate=SWEI_001&f_sub_cate= |title=The Challenge Never Ends, Samwha Capacitor Group |publisher=Samwha.com |date= |accessdate=2013-05-29}}</ref>||Green-Cap||3…3000||2.7||0.28||7.7||5.6||Modules up to 125&nbsp;V
|-
| Skeleton<ref>[http://skeletontech.com/Skeleton-Technologies-SkelCap-Datasheet-121224.pdf Skeleton Ultracapacitor]</ref> ||SkelCap||900…3500||2.85||0.2||14.1||10.1||-
|-
| Taiyo Yuden<ref>{{cite web|url=http://www.yuden.co.jp/eu/product/category/energy_device/ |title=Energy Device (Super Capacitors)|Product Information &#124; Taiyo Yuden Co., Ltd |publisher=Yuden.co.jp |date= |accessdate=2013-05-29}}</ref>||  PAS Capacitor <br> LIC Capacitor||0.03…50<br/>0.25…200||2.5…3.0<br> 3.8||70<br>50 || 6.1<br>- ||-<br/>-||Pseudo capacitors<br>Li-Ion-capacitors
|-
| VinaTech<ref>{{cite web|url=http://www.vina.co.kr/new_html/eng/product/info.asp?cate1=10 |title=EDLC, P-EDLC, Super Capacitor, Ultracapacitor&#124; Vina Tech |publisher=Vina.co.kr |date= |accessdate=2013-05-29}}</ref>||Hy-Cap||1.5…800||2.3…3.0||10||8.7||6.3||-
|-
| WIMA<ref>{{cite web|url=http://www.wima.com/DE/products_super.htm |title=WIMA SuperCap Doppelschicht-Kondensatoren |publisher=Wima.com |date= |accessdate=2013-05-29}}</ref>||SuperCap||12…6500||2.5…2.7||0.18||5.2||4.3|| Modules up to 112&nbsp;V
|-
| YEC<ref>{{cite web|author=yec.com.tw |url=http://www.yec.com.tw/dir-energy/energys-product-factory-list/energys-product-factory-list-1/ |title=energys product factory &#124; YEC &#124; kapton capacitor |publisher=YEC |date= |accessdate=2013-05-29}}</ref>||Kapton capacitor||0.5…400||2.7||12||7.0||5.5||-
|-
|  Yunasko<ref>{{cite web|url=http://www.yunasko.com/index.php?option=com_content&view=article&id=83&Itemid=105&lang=en |title=Ultracapacitors - Yunasko - Yunasko is a developer of high power ultracapacitors |publisher=Yunasko |date= |accessdate=2013-05-29}}</ref>|| Ultracapacitor||480…1700||2.7||0.17||6.1||5.8||-
|-
|colspan="8"|Footnote: Volumetric and gravimetric energy density calculated by maximum capacitance, related voltage and dimensions if not specified in the datasheet
|}
 
===Parametric comparison of technologies===
Supercapacitors compete with electrolytic capacitors and rechargeable batteries especially [[Lithium-ion battery|lithium-ion batteries]]. The following table compares the major parameters of the three main supercapacitor families with electrolytic capacitors and batteries.
 
{| class="wikitable centered" style="text-align:center"
|+ Parameters of supercapacitors <br> compared with electrolytic capacitors and lithium-ion batteries
|- class="hintergrundfarbe6"
! rowspan="2"| Parameter
! rowspan="2"| Aluminum<br>electrolytic<br>capacitors
! colspan="3"| Supercapacitors
! rowspan="2"|  Lithium-<br>ion-<br>batteries
|- class="hintergrundfarbe6"
| '''Double-layer<br>capacitors<br>for<br>memory backup'''||'''Super-<br>capacitors<br>for power<br>applications'''|| '''Pseudo and<br> Hybrid<br>capacitors<br>(Li-Ion<br>capacitors)'''
|-
|Temperature<br>range (°C)||−40 to 125||−20 to +70||−20 to +70||−20 to +70||−20 to +60
|-
|Cell<br>voltage (V)||4 to 550||1.2 to 3.3||2.2 to 3.3||2.2 to 3.8||2.5 to 4.2
|-
|Charge/discharge<br>cycles ||unlimited||10<sup>5</sup> to 10<sup>6</sup>||10<sup>5</sup> to 10<sup>6</sup>||2 • 10<sup>4</sup> to 10<sup>5</sup>||500 to 10<sup>4</sup>
|-
|Capacitance range<br> (F)||≤ 1||0.1 to 470||100 to 12000||300 to 3300||—
|-
|Energy density<br> (Wh/kg)||0.01 to 0.3||1.5 to 3.9||4 to 9||10 to 15||100 to 265
|-
|Power density<br> (kW/kg)||<nowiki>></nowiki> 100||2 to 10||3 to 10||3 to 14||0.3 to 1.5
|-
|Self discharge time<br>at room temperature||short<br>(days)||middle<br>(weeks)|| middle<br>(weeks)||long<br>(month)|| long<br>(month)
|-
|Efficiency (%)||99||95||95||90||90
|-
|Life time<br> at room temperature<br> (Years)||<nowiki>></nowiki> 20||5 to 10||5 to 10||5 to 10||3 to 5
|}
 
Electrolytic capacitors feature unlimited charge/discharge cycles, high dielectric strength (up to 550&nbsp;V) and good frequency response as AC resistance in the lower frequency range. Supercapacitors can store 10 to 100 times more energy than electrolytic capacitors but they are not support AC applications.
 
With regards to rechargeable batteries supercapacitors feature higher peak currents, low cost per cycle, no danger of overcharging, good reversibility, non-corrosive electrolyte and low material toxicity, while batteries offer, lower purchase cost, stable voltage under discharge,but they require complex electronic control and switching equipment, with consequent energy loss and spark hazard given a short.
 
==Standards==
[[File:EDLC-Classes.png|thumb|right|300px|Classification of supercapacitors into classes regarding to IEC 62391-1, IEC 62567and BS EN 61881-3 standards]]
 
Supercapacitors vary sufficiently that they are rarely interchangeable, especially those with higher energy densities. Applications range from low to high peak currents, requiring standardized test protocols.<ref name="cellvssystem">P. Van den Bossche et al.: ''[http://www.cars21.com/files/news/EVS-24-10439%20Bossche.pdf The Cell versus the System: Standardization challenges for electricity storage devices]'' EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Stavanger/Norway 2009</ref>
 
Test specifications and parameter requirements are specified in the generic specification
* [[International Electrotechnical Commission|IEC]]/[[European Committee for Standardization|EN]] 62391–1, ''Fixed electric double layer capacitors for use in electronic equipment''.
 
The standard defines four application classes, according to discharge current levels:
* Class 1: Memory backup
* Class 2: Energy storage, mainly used for driving motors require a short time operation,
* Class 3: Power, higher power demand for a long time operation,
* Class 4: Instantaneous power, for applications that requires relatively high current units or peak currents ranging up to several hundreds of amperes even with a short operating time
 
Three further standards describe special applications:
* IEC 62391–2, ''Fixed electric double-layer capacitors for use in electronic equipment - Blank detail specification - Electric double-layer capacitors for power application'' -
* IEC 62576, ''Electric double-layer capacitors for use in hybrid electric vehicles. Test methods for electrical characteristics''
* BS/EN 61881-3, ''Railway applications. Rolling stock equipment. Capacitors for power electronics. Electric double-layer capacitors''
 
==Applications==
Supercapacitors do not support AC applications.
 
Supercapacitors have advantages in applications where a large amount of power is needed for a relatively short time, where a very high number of charge/discharge cycles or a longer lifetime is required. Typical applications range from milliamp currents or milliwatts of power for up to a few minutes to several amps current or several hundred kilowatts power for much shorter periods.
 
The time t a supercapacitor can deliver a constant current I can be calculated as:
:<math>t=\frac{C\cdot (U_\text{charge}-U_\text{min}) }{I}</math>
 
as the capacitor voltage decreases from U<sub>charge</sub> down to U<sub>min</sub>.
 
If the application needs a constant power P for a certain time t this can be calculated as:
 
:<math>t=\frac{1}{2 P}\cdot C\cdot(U_\text{charge}^2-U_\text{min}^2).</math>
 
wherein also the capacitor voltage decreases from U<sub>charge</sub> down to U<sub>min</sub>.
 
===General applications===
 
====Consumer applications====
In applications with fluctuating loads, such as [[laptop]] computers, [[Personal digital assistant|PDA’s]], [[GPS navigation device|GPS]], [[portable media player]]s, [[Mobile device|hand-held devices]],<ref>Graham Pitcher [http://fplreflib.findlay.co.uk/articles/6610/if-the-cap-fits.pdf If the cap fits ..]. New Electronics. 26 March 2006</ref> and [[photovoltaic system]]s, supercapacitors can stabilize the power supply.
 
A cordless [[electric screwdriver]] with supercapacitors for energy storage has about half the run time of a comparable battery model, but can be fully charged in 90 seconds. It retains 85% of its charge after three months left idle.<ref>{{cite web|url=http://www.ohgizmo.com/2007/10/01/coleman-flashcell-cordless-screwdriver-recharges-in-just-90-seconds/ |title=Coleman FlashCell Cordless Screwdriver Recharges In Just 90 Seconds |publisher=OhGizmo! |date=2007-09-11 |accessdate=2013-05-29}}</ref>
 
Supercapacitors deliver power for [[flash (photography)|photographic flashes]] in [[digital camera]]s and for [[LED]] life flashlights that can be charged in, e.g., 90 seconds.<ref>{{cite web|url=http://tech.slashdot.org/article.pl?sid=08/12/10/1821208 |title=Ultracapacitor LED Flashlight Charges In 90 Seconds - Slashdot |publisher=Tech.slashdot.org |date=2008-12-10 |accessdate=2013-05-29}}</ref>
 
{{As of|2013}}, portable speakers powered by supercapacitors were offered to the market.<ref>{{cite web|url=http://www.gizmag.com/helium-capacitor-powered-speakers/29938/ |title=Helium Bluetooth speakers powered by supercapacitors |publisher=Gizmag.com |date= |accessdate=2013-11-29}}</ref> 
 
====Industrial applications====
Supercapacitors provide backup or emergency shutdown power to low-power equipment such as [[Random-access memory|RAM]], [[Static random-access memory|SRAM]], micro-controllers and [[PC Card]]s. They are the sole power source for low energy applications such as [[automated meter reading]] (AMR)<ref name="Gallay">R. Gallay, Garmanage, [http://www.mondragon.edu/en/phs/research/research-lines/electrical-energy/news-folder/workshop/Mondragon%202012_06_22_Gallay.pdf Technologies and applications of Supercapacitors], University of Mondragon, June 22, 2012</ref> equipment or for event notification in industrial electronics.
 
Supercapacitors buffer power to and from [[Rechargeable battery|rechargeable batteries]], mitigating the effects of short power interruptions and high current peaks. Batteries kick in only during extended interruptions, e.g., if the [[Mains electricity|mains power]] or a [[fuel cell]] fails, which lengthens battery life.
 
Typical industrial applications for such circuits are [[uninterruptible power supplies]] (UPS), where supercapacitors have replaced much larger banks of electrolytic capacitors. This combination reduces the cost per cycle, saves on replacement and maintenance costs, enables the battery to be downsized and extends battery life.<ref>{{cite web|author=David A. Johnson, P.E. |url=http://www.discoversolarenergy.com/storage/super-caps.htm |title=SuperCapacitors as Energy Storage |publisher=Discoversolarenergy.com |date= |accessdate=2013-05-29}}</ref><ref>A. Stepanov, I. Galkin, [http://egdk.ttu.ee/files/kuressaare2007/Kuressaare2007_136Stepanov-Galkin.pdf Development of supercapacitor based uninterruptible power supply], Doctoral school of energy- and geo-technology, January 15–20, 2007. Kuressaare, Estonia</ref><ref>{{cite web|url=http://www.marathon-power.com/EN/UPSProducts/SupercapacitorUPS/SupercapacitorUPS.html |title=Supercapacitor UPS |publisher=Marathon Power |date= |accessdate=2013-05-29}}</ref> A disadvantage is the need for a special circuit to reconcile the differing behaviors.
 
Supercapacitors are used as battery replacement in some pit trains in China to substitute conventional trolleys in coal mines. They bring coal to the surface. This approach removes a fire and safety hazard from coal mines coming from the batteries. The capacitors can be charged at the surface in less than 30 minutes.<ref name="Sinautec">{{cite web|url=http://www.sinautecus.com/products-golfcart.html |title=SINAUTEC, Automobile Technology, LLC |publisher=Sinautecus.com |date= |accessdate=2013-05-29}}</ref>
 
====Renewable energy ====
[[File:Windrad-Nahaufnahme.jpg|thumb|Rotor with [[wind turbine]] pitch system]]
 
Supercapacitors provide backup power for [[actuator]]s in [[wind turbine]] pitch systems, so that blade pitch can be adjusted even if the main supply fails.<ref name="Miller TMA">{{cite web|url=http://www.maxwell.com/products/ultracapacitors/industries/ups-systems |title=Maxwell Technologies Ultracapacitors (ups power supply) Uninterruptible Power Supply Solutions |publisher=Maxwell.com |date= |accessdate=2013-05-29}}</ref>
 
Supercapacitors can stabilize voltage for [[Overhead power line|powerlines]]. Wind and [[photovoltaic system]]s exhibit fluctuating loads evoked by clouds that supercapacitors can buffer within milliseconds. This helps stabilize grid voltage and frequency, balance supply and demand of power and manage real or reactive power.<ref>International Energy Agency, Photovoltaic Power Systems Program, [http://www.iea-pvps-task11.org/HTMLobj-187/Act_24_Final.pdf The role of energy storage for mini-grid stabilization], IEA PVPS Task 11, Report IEA-PVPS T11-02:2011, July 2011</ref><ref>J. R. Miller, JME, Inc. and Case Western Reserve University, [http://energy.gov/sites/prod/files/piprod/documents/Session_D_Miller_rev.pdf Capacitors for Power Grid Storage, (Multi-Hour Bulk Energy Storage using Capacitors)]</ref><ref>{{cite web|url=http://www.jeol.com/NEWSEVENTS/PressReleases/tabid/521/articleType/ArticleView/articleId/112/A-30-Whkg-Supercapacitor-for-Solar-Energy-and-a-New-Battery.aspx |title=A 30 Wh/kg Supercapacitor for Solar Energy and a New Battery > JEOL Ltd |publisher=Jeol.com |date=2007-10-03 |accessdate=2013-05-29}}</ref>
 
====Public sector====
[[File:Led streetlight.jpg|thumb|left|100px|Street light combining a solar cell power source with [[Light-emitting diode|LED lamps]] and supercapacitors for energy storage]]
 
Sado City, in Japan's Niigata Prefecture, has street lights that combine a stand-alone power source with solar cells and LEDs. Supercapacitors store the solar energy and supply 2 LED lamps, providing 15&nbsp;W power consumption overnight. The supercapacitors can last more than 10 years and offer stable performance under various weather conditions, including temperatures from +40 to below -20&nbsp;°C.<ref>[http://www.chemi-con.co.jp/e/company/pdf/20100330-1.pdf ''Nippon Chemi-Con, Stanley Electric and Tamura announce: Development of "Super CaLeCS", an environment-friendly EDLC-powered LED Street Lamp.''] Press Release Nippon Chemi-Con Corp., 30. März 2010.</ref>
 
====Aerial lift====
[[File:Cablecar.zelllamsee.500pix.jpg|thumb|Aerial lift in [[Zell am See]], [[Austria]]]]
 
In [[Zell am See]], [[Austria]], an [[aerial lift]] connects the city with [[Schmittenhöhe]] mountain. The gondolas sometimes run 24 hours per day, using electricity for lights, door opening and communication. The only available time for recharging batteries at the stations is during the brief intervals of guest loading and unloading, which is too short to recharge batteries. Supercapacitors offer a fast charge, higher number of cycles and longer life time than batteries.
 
[[Emirates Air Line (cable car)]], also known as the Thames cable car, is a 1-kilometre (0.62&nbsp;mi) gondola line that crosses the [[Thames]] from the [[Greenwich Peninsula]] to the [[Royal Docks]]. The cabins are equipped with a modern infotainment system, which is powered by supercapacitors.<ref>Londoner Emirates Air Line: [http://www.zukunft-mobilitaet.net/10048/analyse/seilbahn-london-fahrpreis-kosten-kritik-olympia2012/ Teuerste Seilbahn der Welt mit fraglicher verkehrlicher Bedeutung]</ref><ref>ISR, Internationale Seilbahn Rundschau, [http://www.isr.at/Beste-Unterhaltung-ueber-den-Wolken.709.0.html Beste Unterhaltung über den Wolken]</ref>
 
====Medical====
Supercapacitors are used in [[defibrillator]]s where they can deliver 500 [[joule]]s to shock the heart back into [[sinus rhythm]].<ref>{{cite web|author=yec.com.tw |url=http://www.yec.com.tw/dir-super/super-capacitor-supplier-list-list/super-capacitor-supplier-list-list-17/ |title=super capacitor supplier list &#124; YEC &#124; This high-energy capacitor from a defibrillator can deliver a lethal 500 joules of energy |publisher=YEC |date= |accessdate=2013-05-29}}</ref>
 
====Aviation====
In 2005, aerospace systems and controls company [[Diehl Aerospace|Diehl Luftfahrt Elektronik]] GmbH chose supercapacitors to power emergency actuators for doors and [[evacuation slide]]s used in [[airliner]]s, including the [[Airbus 380]].<ref name="Miller TMA" />
 
====Military====
Supercapacitors' low internal resistance supports applications that require short-term high currents. Among the earliest uses were motor startup (cold diesel engine start) for large engines in tanks and submarines.<ref>[http://www.cantecsystems.com/ Cantec Systems, Power solutions]</ref> Supercapacitors buffer the battery, handling short current peaks and reducing cycling. Further military applications that require high power density are phased array radar antennae, laser power supplies, military radio communications, avionics displays and instrumentation, backup power for airbag deployment and GPS-guided missiles and projectiles.<ref>Evans Capacitor Company, [http://www.evanscap.com/pdf/Hybrid_Caps_COTS.pdf High Energy Density Capacitors for Military Applications]</ref><ref>Tecate Group, [http://www.tecategroup.com/ultracapacitors-supercapacitors/military-applications.php Back-up power for military applications- Batteries optional!]</ref>
===Energy recovery===
A primary challenge of all transport is reducing energy consumption and reducing {{chem|CO|2}} emissions. Recovery of braking energy ([[Recuperation (recovery)|recuperation]] or [[Regenerative brake|regeneration]]) helps with both. This requires components that can quickly store and release energy over long times with a high cycle rate. Supercapacitors fulfill these requirements and are therefore used in a lot of applications in all kinds of transportation.
====Railway====
{{main|Railway electrification system}}
 
[[File:Rc4 1197 + Rc4 1169 Ockelbo 13.08.08.JPG|thumb|right|Green Cargo operates [[TRAXX]] locomotives from [[Bombardier Transportation]]]]
 
Supercapacitors can be used to supplement batteries in starter systems in [[Diesel engine|diesel]] railroad [[locomotives]] with [[diesel-electric transmission]]. The capacitors capture the braking energy of a full stop and deliver the peak current for starting the diesel engine and acceleration of the train and ensures the stabilization of catenary voltage. Depending on the driving mode up to 30% energy saving is possible by recovery of breaking energy. Low maintenance and environmentally friendly materials encouraged the choice of supercapacitors.<ref name="cdn.intechopen.com">L. Lionginas, L. Povilas, [http://cdn.intechopen.com/pdfs/17059/InTech-Management_of_locomotive_tractive_energy_resources.pdf Management of Locomotive Tractive Energy Resources]</ref><ref name="A. Jaafar, B. Sareni, X. Roboam, M. Thiounn-Guermeur">{{cite web|author=A. Jaafar, B. Sareni, X. Roboam, M. Thiounn-Guermeur |url=http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5729131&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5729131 |title=IEEE Xplore - Sizing of a hybrid locomotive based on accumulators and ultracapacitors |doi=10.1109/VPPC.2010.5729131 |publisher=Ieeexplore.ieee.org |date=2010-09-03 |accessdate=2013-05-29}}</ref>
 
====Cranes, forklifts and tractors==== 
{{main|Crane (machine)|Forklift truck}}
 
[[File:Kuantan Port Container Yard with Rubber Tyre Gantry.JPG|thumb|left| Container Yard with Rubber Tyre Gantry Crane]]
Mobile hybrid diesel-electric [[rubber tyred gantry crane]]s move and stack containers within a terminal. Lifting the boxes requires large amounts of energy. Some of the energy could be recaptured while lowering the load resulting in improved efficiency.<ref>J. R. Miller, A. F. Burke, [http://www.electrochem.org/dl/interface/spr/spr08/spr08_p53-57.pdf Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications], ECS, Vol. 17, No. 1, Spring 2008</ref>
 
A triple hybrid [[forklift truck]] uses fuel cells and batteries as primary energy storage and supercapacitors to buffer power peaks by storing braking energy. They provide the fork lift with peak power over 30&nbsp;kW. The triple-hybrid system offers over 50% energy savings compared with [[diesel engine|diesel]] or fuel-cell systems.<ref>{{cite web|author=fuelcellworks.com |url=http://www.fuelcellsworks.com/Supppage7867.html|archiveurl=http://web.archive.org/web/20080521204639/http://www.fuelcellsworks.com/Supppage7867.html|archivedate=2008-05-21 |title=Fuel Cell Works Supplemental News Page |publisher=Web.archive.org |date=|accessdate=2013-05-29}}</ref>
 
Supercapacitor-powered [[Shunt truck|terminal tractors]] transport containers to warehouses. They provide an economical, quiet and pollution-free alternative to diesel terminal tractors.<ref name="Sinautec" />
 
====Light-rails and trams====
{{main| Light rail| Tram}}
 
Supercapacitors make it possible not only to reduce energy but additional to do away catenary overhead lines in historical city areas preserving the city’s architectural heritage. This approach may allow many new LRV city lines to serve catenary overhead wires that are too expensive to fully route installation.
[[File:Streetcar Straßenbahn Tram Mannheim RNV Rhein-Neckar-Verbund 25.JPG|thumb|right|Light rail vehicle in [[Mannheim]]]]
 
In 2003 [[Mannheim]], adopted a prototype [[light-rail]] vehicle (LRV) using the [[British Rail Class 377#MITRAC|MITRAC]] Energy Saver system from  [[Bombardier Transportation]] to store mechanical braking energy with a roof-mounted supercapacitor unit.<ref>M. Fröhlich, M. Klohr, St. Pagiela: ''[http://www.uic.org/cdrom/2008/11_wcrr2008/pdf/R.3.4.3.2.pdf Energy Storage System with UltraCaps on Board of Railway Vehicles]'' In: ''[http://www.allianz-pro-schiene.de/veranstaltungen/2006/workshop-verbesserung-der-umweltwirkungen-des-eisenbahnverkehrs/praesentation-kehl.pdf Proceedings - 8th World Congress on Railway Research]'' Mai 2008, Soul, Korea</ref><ref>Bombardier, MITRAC Energy Saver  [http://www.bombardier.com/content/dam/Websites/bombardiercom/supporting-documents/BT/Bombardier-Transport-ECO4-MITRAC_Energy_Saver-EN.pdf Support PDF]</ref> It contains several units each made of 192 capacitors with 2700&nbsp;F /2.7&nbsp;V  interconnected in three parallel lines. This circuit results in a 518&nbsp;V system with an energy content of 1.5&nbsp;kWh. For acceleration when starting this "on-board-system" can provided the LRV with 600&nbsp;kW and can drive the vehicle up to 1&nbsp;km without catenary supply integrating the LRV into the urban environment by driving without catenary lines. Compared to conventional LRVs or Metro vehicles that return energy into the grid, onboard energy storage saves up to 30% and reduces peak grid demand by up to 50%.<ref>Bombardier, MITRAC Energy Saver  [http://www.local-renewables-conference.org/fileadmin/lr-conference/files/LR2010/Documents/A1_Bombardier_Freiburg_Oct_2010.pdf  Presentation PDF]</ref>
[[File:Paris-tramway.jpg|thumb|left|The Paris T3 line runs without catenary overhead wires in some sections]]
 
In 2009 supercapacitors enabled LRV's to operate in the historical city area of [[Heidelberg]] without catenary overhead wires preserving the city’s architectural heritage. The SC equipment cost an additional €270,000 per vehicle, which was expected to be recovered over the first 15 years of operation. The supercapacitors are charged at stop-over stations when the vehicle is at a scheduled stop. This approach may allow many LRV city lines to serve catenary overhead wires that are too expensive to fully route installation. In April 2011 German regional transport operator Rhein-Neckar, responsible for Heidelberg, ordered a further 11 units.<ref>{{cite web|url=http://www.railwaygazette.com/nc/news/single-view/view/rhein-neckar-verkehr-orders-more-supercapacitor-trams.html |title=Rhein-Neckar Verkehr orders more supercapacitor trams |publisher=Railway Gazette |date=2011-04-05 |accessdate=2013-05-29}}</ref>
 
In 2009 in [[Paris]] a tram on [[Paris tramway Line 3|route T3]] operates with an energy recovery system of the manufacturer Alstom called "STEEM".<ref>Alstom, STEEM [http://www.alstom.com/press-centre/2011/5/STEEM-promoting-energy-savings-for-tramways/ ]</ref> The system is fitted with 48 roof-mounted supercapacitors to store braking energy provides tramways with a high level of energy autonomy by enabling them to run without catenary power on parts of its route, recharging while traveling on powered stop-over stations. During the tests, the tramset used an average of approximately 16% less energy.<ref>{{cite web|url=http://www.railwaygazette.com/nc/news/single-view/view/supercapacitors-to-be-tested-on-paris-steem-tram.html |title=Supercapacitors to be tested on Paris STEEM tram |publisher=Railway Gazette |date=2009-07-08 |accessdate=2013-05-29}}</ref>
[[File:LRT 751 Tin Wing.jpg|thumb| Light rail vehicle in [[Hong Kong]]]]
 
In 2012 tram operator [[Geneva Public Transport]] began tests of an LRV equipped with a prototype roof-mounted supercapacitor unit to recover braking energy.<ref>{{cite web|url=http://www.railwaygazette.com/news/industry-technology/single-view/view/geneve-tram-trial-assesses-supercapacitor-performance.html |title=Genève tram trial assesses supercapacitor performance |publisher=Railway Gazette |date=2012-08-07 |accessdate=2013-05-29}}</ref>
 
[[Siemens]] is delivering supercapacitor-enhanced light-rail transport systems that include mobile storage.<ref>{{cite web |url=http://www.siemens.com/innovation/en/publikationen/publications_pof/pof_fall_2007/materials_for_the_environment/energy_storage.htm |title=Energy Storage - Siemens Global Website |publisher=Siemens.com |date= |accessdate=2013-05-29}}</ref>
 
Hong Kong's South Island metro line is to be equipped with two 2 MW energy storage units that are expected to reduce energy consumption by 10%.<ref>{{cite web|url=http://www.railwaygazette.com/news/single-view/view/supercapacitor-energy-storage-for-south-island-line.html |title=Supercapacitor energy storage for South Island Line |publisher=Railway Gazette |date=2012-08-03 |accessdate=2013-05-29}}</ref>
 
In August 2012 the CSR Zhouzhou Electric Locomotive corporation of China presented a prototype two-car light metro train equipped with a roof-mounted supercapacitor unit. The train can travel up 2&nbsp;km without wires, recharging in 30 seconds at stations via a ground mounted pickup. The supplier claimed the trains could be used in 100 small and medium-sized Chinese cities.<ref>{{cite web|url=http://www.railwaygazette.com/news/single-view/view/supercapacitor-light-metro-train-unveiled.html |title=Supercapacitor light metro train unveiled|publisher=Railway Gazette |date=2012-08-23 |accessdate=2013-05-29}}</ref>
 
In 2012, in Lyon (France), the [[:fr:Sytral|SYTRAL]] (Lyon public transportation administration) started experiments of a "way side regeneration" system built by Adetel Group which has developed its own energy saver named ″NeoGreen″ for LRV, LRT and metros.<ref>[http://www.adetelgroup.com/library/fiches-produits/4-NEO_GREEN_POWER.pdf 4-Neo Green Power]</ref>
 
====Buses====
{{main|Hybrid electric bus}}
{{Further|Capa vehicle|Solar bus}}
 
[[File:Stadtbus Nürnberg Bus 713 Btf. Schweinau.jpg|thumb|left|MAN Ultracapbus in Nuremberg, Germany]]
The first hybrid bus with supercapacitors in Europe came in 2001 in [[Nuremberg]], Germany. It was MAN's so-called "Ultracapbus", and was tested in real operation in 2001/2002. The test vehicle was equipped with a diesel-electric drive in combination with supercapacitors. The system was supplied with 8 Ultracap modules of 80&nbsp;V, each containing 36 components. The system worked with 640&nbsp;V and could be charged/discharged at 400&nbsp;A. Its energy content was 0.4&nbsp;kWh with a weight of 400&nbsp;kg.
 
The supercapacitors recaptured braking energy and delivered starting energy. Fuel consumption was reduced by 10 to 15% compared to conventional diesel vehicles. Other advantages included reduction of {{chem|CO|2}} emissions, quiet and emissions-free engine starts, lower vibration and reduced maintenance costs.<ref>{{cite web|url=http://www.vag.de/Busses/id124/The-Ultracapbus.html |title=The Ultracapbus - VAG Nürnberg - Öffentlicher Personennahverkehr in Nürnberg |publisher=Vag.de |date= |accessdate=2013-05-29}}</ref><ref>Stefan Kerschl, Eberhard Hipp, Gerald Lexen: ''[http://www.aachener-kolloquium.de/pdf/Vortr_Nachger/Kerschl.pdf Effizienter Hybridantrieb mit Ultracaps für Stadtbusse]'' 14. Aachener Kolloquium Fahrzeug- und Motorentechnik 2005 (German)</ref>
 
[[File:Expo 2010 Electric Bus.jpg|thumb|right|Electric bus at EXPO 2010 in Shanghai (Capabus) recharging at the bus stop]]
 
{{as of|2002}} in [[Luzern]], [[Switzerland]] an electric bus fleet called TOHYCO-Rider was tested. The supercapacitors could be recharged via an inductive contactless high-speed power charger after every transportation cycle, within 3 to 4 minutes.<ref>V.Härri, S.Eigen, B.Zemp, D.Carriero: ''[http://www.energie-apero-luzern.ch/archives/pav112c3.pdf Kleinbus „TOHYCO-Rider“ mit SAM-Superkapazitätenspeicher]'' Jahresbericht 2003 - Programm "Verkehr & Akkumulatoren", HTA Luzern, Fachhochschule Zentralschweiz (Germany)</ref><ref>{{cite web|url=http://ebookbrowse.com/tohyco-rider-pdf-d97968531 |title=TOHYCO Rider Fgyre|publisher=Ebookbrowse.com |date= |accessdate=2013-05-29}}</ref>
 
In early 2005 [[Shanghai]] tested a new form of [[electric bus]] called [[capabus]] that runs without powerlines (catenary free operation) using large onboard supercapacitors that partially recharge whenever the bus is at a stop (under so-called electric umbrellas), and fully charge in the [[bus terminus|terminus]]. In 2006, two commercial bus routes began to use the capabuses; one of them is route 11 in Shanghai. It was estimated that the supercapacitor bus was cheaper than a lithium-ion battery bus, and one of its buses had one-tenth the energy cost of a diesel bus with lifetime fuel savings of $200,000.<ref>{{cite web|last=Hamilton |first=Tyler |url=http://www.technologyreview.com/news/415773/next-stop-ultracapacitor-buses/?a=f |title=Next Stop: Ultracapacitor Buses &#124; MIT Technology Review |publisher=Technologyreview.com |date=2009-10-19 |accessdate=2013-05-29}}</ref>
 
A hybrid electric bus called [[tribrid vehicle|tribrid]] was unveiled in 2008 by the [[University of Glamorgan]], [[Wales]], for use as student transport. It is powered by [[hydrogen fuel]] or [[solar cell]]s, batteries and ultracapacitors.<ref>{{cite news |first= |last= |title=Green 'tribrid' minibus unveiled|url=http://news.bbc.co.uk/2/hi/uk_news/wales/7436908.stm |work=BBC |date=2008-06-05 |accessdate=2013-01-12}}</ref><ref>{{cite news |first= |last= |title=Launch of Europe's First Tribrid Green Minibus |url=http://news.glam.ac.uk/news/en/2008/may/30/launch-europes-first-tibrid-green-minibus/ |work= |date=2008-05-30 |accessdate=2013-01-12}}</ref>
 
====Motor racing====
[[File:Sebastian Vettel won 2010 Malaysian GP.jpg|thumb|World champion Sebastian Vettel in [[Malaysia]] 2010]]
[[File:Toyota TS030.JPG|thumb|left|Toyota TS030 Hybrid at [[2012 24 Hours of Le Mans]] motor race]]
 
The [[FIA]], a governing body for motor racing events, proposed in the ''Power-Train Regulation Framework for [[Formula 1]]'' version 1.3 of 23 May 2007 that a new set of [[power train]] regulations be issued that includes a hybrid drive of up to 200&nbsp;kW input and output power using "superbatteries" made with batteries and supercapacitors connected in parallel ([[KERS]]).<ref>[http://paddocktalk.com/news/html/modules/ew_filemanager/07images/f1/fia/332668895__2011_Power_Train_Regulation_Framework.pdf Formula One 2011: Power-Train Regulation Framework]. 24 May 2007. Retrieved on 23 April 2013.</ref><ref>{{cite web|url=http://www.motorsport-total.com/f1/news/2009/03/Die_grosse_Analyse_KERS_fuer_Dummys_09032524.html |title=Die große Analyse: KERS für Dummys - Formel 1 bei |publisher=Motorsport-total.com |date=2013-05-25 |accessdate=2013-05-29}}</ref> About 20% tank-to-wheel efficiency could be reached using the KERS system.
 
The [[Toyota TS030 Hybrid]] LMP1 car, a [[racing car]] developed under [[Le Mans Prototype]] rules, uses a hybrid drivetrain with supercapacitors.<ref>{{cite web|url=http://www.racecar-engineering.com/news/toyota-ts030-lmp1-hybrid-revealed/ |title=Toyota TS030 LMP1 hybrid revealed |publisher=Racecar Engineering |date=2012-01-24 |accessdate=2013-05-30}}</ref><ref>[http://www.sportauto.de/motorsport/die-hybridtechnik-im-toyota-ts030-mit-superkondensatoren-zum-lemans-erfolg-4419021.html Die Hybridtechnik im Toyota TS030: Mit Superkondensatoren zum LeMans-Erfolg. Sportauto]</ref> In the [[2012 24 Hours of Le Mans]] race a TS030 qualified with a fastest lap only 1.055 seconds slower (3:24.842 versus 3:23.787)<ref>{{cite web|author=Fred Jaillet |url=http://www.toyotahybridracing.com/toyota-racing-impresses-in-le-mans-qualifying/?myvar=News |title=Post TOYOTA Racing Impresses In Le Mans Qualifying • TOYOTA Racing - FIA World Endurance Championship Team |publisher=Toyotahybridracing.com |date=2012-06-15 |accessdate=2013-05-30}}</ref> than the fastest car, an [[Audi R18 e-tron quattro]] with [[flywheel]] energy storage. The supercapacitor and flywheel components, whose rapid charge-discharge capabilities help in both braking and acceleration, made the Audi and Toyota hybrids the fastest cars in the race. In the 2012 Le Mans race the two competing TS030s, one of which was in the lead for part of the race, both retired for reasons unrelated to the supercapacitors. The TS030 won three of the 8 races in the [[2012 FIA World Endurance Championship season]].
 
====Hybrid electric vehicles====
{{main|Hybrid electric vehicle}}
{{See also|Hybrid vehicle drivetrain}}
[[File:2011 Mazda2 Touring -- 11-30-2010 2.jpg|thumb|right|Mazda2 (since 2010)]]
Supercapacitor/battery combinations in electric vehicles (EV) and [[hybrid electric vehicle]]s (HEV) are well investigated.<ref name="cellvssystem"/><ref>A.F. Burke, [http://lifepo4.info/Battery_study/Batteries/Batteries_and_Ultracapacitors_for_Electric_Hybrid_and_Fuel_Cell_Vehicles Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles]</ref><ref>Cap-XX [http://www.cap-xx.com/resources/docs/CAP-XX%20-%20Supercapacitors%20for%20Automotive%20Applications%20(website).pdf Supercapacitors for Automotive & Other Vehicle Applications], March 2012</ref> A 20 to 60% fuel reduction has been claimed by recovering brake energy in EVs or HEVs. The ability of supercapacitors to charge much faster than batteries, their stable electrical properties, broader temperature range and longer lifetime are suitable, but weight, volume and especially cost mitigate those advantages.
 
Supercapacitors lower energy density makes them unsuitable for use as a stand-alone energy source for long distance driving.<ref>A. Pesaran, J. Gonder, [http://www.nrel.gov/vehiclesandfuels/energystorage/pdfs/39731.pdf Recent Analysis of UCAPs in Mild Hybrids], National Renewable Energy Laboratory, Golden, Colorado, 6th Advanced Automotive Battery Conference, Baltimore, Maryland, May 17–19, 2006</ref> The fuel economy improvement between a capacitor and a battery solution is about 20% and is available only for shorter trips. For long distance driving the advantage decreases to 6%. Vehicles combining capacitors and batteries run only in experimental vehicles.<ref>[http://www.afstrinity.net/afstrinity-xh150-pressrelease.pdf AFS TRINITY UNVEILS 150 MPG EXTREME HYBRID (XH™) SUV]. AFS Trinity Power Corporation. 13 January 2008. Retrieved on 31 March 2013.</ref>
 
{{As of|2013}} all automotive manufacturers of EV or HEVs have developed prototypes that uses supercapacitors instead of batteries to store braking energy in order to improve driveline efficiency. Only the [[Mazda 6]] uses supercapacitors to recover braking energy called i-eloop to reduce fuel consumption about 10%.<ref>[http://www.autoblog.com/2013/07/05/2014-mazda6-i-eloop-to-net-40-mpg-hwy-28-mpg-city/ Auto news, 2014 Mazda6 i-Eloop to net 40 mpg hwy, 28 mpg city]</ref>
 
Russian Yo-cars [[Ё-mobile]] series is an ё-concept and ё-crossover hybrid vehicle working with a gas driven Wankel motor and an electric generator for driving. A supercapacitor with relatively low capacitance recovers brake energy to power the electric motor when accelerating from a stop.<ref>A. E. KRAMER, Billionaire Backs a Gas-Electric Hybrid Car to Be Built in Russia, The New York Times, December 13, 2010
[http://www.nytimes.com/2010/12/14/business/global/14hybrid14.html?_r=0]</ref>
 
==New developments==
 
{{As of|2013}} commercially available lithium-ion supercapacitors offered the highest gravimetric energy density to date, reaching 15&nbsp;Wh/kg. Research focuses on improving energy density, reducing internal resistance, expanding temperature range, increasing lifetimes and reducing costs.<ref name="Naoi-Simon" />
Projects include nanostructured electrodes,<ref name="Jian Li" /> tailored-pore-size electrodes, pseudocapacitive coating or doping materials and improved electrolytes.
 
{| class="wikitable sortable" border="1"
|+ Announcements
! New<br />development !! Date !! Energy density<br />(footnote) !! Power density !! Cycles !! Capacitance !!Notes
|-
| Graphene sheets compressed by capillary compression of a volatile liquid<ref>{{cite DOI|10.1126/science.1239089}}</ref> ||2013 || {{val|60|u=Wh/l}}|| || || ||Subnanometer scale electrolyte integration created a continuous ion transport network.
|-
| Vertically aligned carbon nanotubes electrodes<ref name="Schindall" /><ref name=Signorelli /> || 2007<br />2009<br />2013 || {{val|13.50|u=Wh/kg}} || {{val|37.12|u=W/g}} ||  300,000|| || first realization<ref>{{cite web|author=Fastcap|url=http://www.fastcapsystems.com/technology |title=Paradigm shift |publisher=FastCap Systems |date=|accessdate=2013-05-30}}</ref>
|-
| Curved graphene sheets<ref name="Bor Jang" /><ref name="Dume" /> || 2010 || {{val|85.6|u=Wh/kg}} || || ||550 F/g ||Single-layers of curved graphene sheets that do not restack face-to-face, forming mesopores that are accessible to and wettable by environmentally friendly ionic electrolytes at a voltage up to {{val|4|u=V}}.
|-
| KOH restructured graphite oxide<ref>{{cite web|url=http://www.rsc.org/chemistryworld/News/2011/May/13051102.asp |title=New carbon material boosts supercapacitors |publisher=Rsc.org |date=2011-05-13 |accessdate=2013-05-30}}</ref><ref>{{cite web|author=Y. Zhu et. al.|url=http://www.sciencemag.org/content/332/6037/1537.abstract |title=Carbon-Based Supercapacitors Produced by Activation of Graphene |publisher=Sciencemag.org |date= |accessdate=2013-05-30}}</ref><ref>[http://www.sciencemag.org/content/suppl/2011/05/11/science.1200770.DC1/Zhu-SOM.pdf Carbon-Based Supercapacitors Produced by Activation of Graphene]</ref> || 2011 || {{val|85|u=Wh/kg}} || ||>10,000 ||550 F/g || potassium hydroxide restructured the carbon to make a three dimensional porous network
|-
| Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores<ref>TaeYoung Kim, Gyujin Jung, Seonmi Yoo, Kwang S. Suh, Rodney S. Ruoff , Activated Graphene-Based Carbons as Supercapacitor Electrodes with Macro- and Mesopores [http://pubs.acs.org/doi/abs/10.1021/nn402077v]</ref>|| 2013 || {{val|74|u=Wh/kg}} || || || || three-dimensional pore structures in graphene-derived carbons in which mesopores are integrated into macroporous scaffolds with a surface area of {{val|3290|u=m<sup>2</sup>/g}}
|-
| [[Conjugated microporous polymer]]<ref name="CMP">[http://www.greencarcongress.com/2011/08/kou-20110822.html Microporous polymer material for supercapacitors with large capacitance, high energy and power densities and excellent cycle life]</ref><ref name="Donglin">Yan Kou, Yanhong Xu, Zhaoqi Guo, Donglin Jiang,[http://onlinelibrary.wiley.com/doi/10.1002/anie.201103493/abstract Supercapacitive Energy Storage and Electric Power Supply Using an Aza‐Fused π‐Conjugated Microporous Framework], Angewandte Chemie, Band 123 – 37, 2011, pages 8912–8916, DOI:10.1002/ange.201103493</ref> || 2011 || {{val|53|u=Wh/kg}}|| || 10,000|| || Aza-fused π-conjugated microporous framework
|-
| SWNT composite electrode<ref>{{cite doi|10.1021/nn1017457}}</ref> ||2011 || ||{{val|990|u=kW/kg}} || || || A tailored meso-macro pore structure held more electrolyte, ensuring facile ion transport
|-
| [[Nickel hydroxide]] nanoflake on CNT composite electrode<ref>Zhe Tang, Chun-hua Tang, Hao Gong,[http://onlinelibrary.wiley.com/doi/10.1002/adfm.201102796/abstract;jsessionid=DBEA51ACFBB2CA4AB3F1C9984260D255.d01t01A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes], 19 JAN 2012, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, DOI: 10.1002/adfm.201102796</ref>
|| 2012 || {{val|50.6|u=Wh/kg}} || || ||3300 F/g || Asymmetric supercapacitor using the Ni(OH)<sub>2</sub>/CNT/NF electrode as the anode assembled with an activated carbon (AC) cathode achieving a cell voltage of 1.8&nbsp;V
|-
| Battery-electrode nanohybrid<ref name="Nanohybrid" /> ||2012 ||{{val|40|u=Wh/l}}|| {{val|7.5|u=kW/l}}||  10,000 || ||{{chem|Li|4|Ti|5|O|12}} (LTO) deposited on carbon nanofibres (CNF) anode and an activated carbon cathode
|-
| [[Nickel]] [[cobaltite]] deposited on mesoporous carbon aerogel<ref name="Hsing-Chi">Hsing-Chi Chien, Wei-Yun Cheng, Yong-Hui Wang, Shih-Yuan Lu, Ultrahigh Specific Capacitances for Supercapacitors Achieved by Nickel Cobaltite/Carbon Aerogel Composites, 25 JUL 2012, 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim DOI: 10.1002/adfm.201201176 [http://onlinelibrary.wiley.com/doi/10.1002/adfm.201201176/abstract]</ref> || 2012 || {{val|53|u=Wh/kg}} ||  {{val|2.25|u=kW/kg}} || || {{val|1700|u=F/g}} || Nickel cobaltite, a low cost and an environmentally friendly supercapacitive material
|-
| [[Manganese dioxide]] intercalated nanoflakes<ref>L Mai, H Li, Y Zhao, L Xu, X Xu, Y Luo, Z Zhang, W Ke, C Niu, Q. Zhang: ''Fast ionic diffusion-enabled nanoflake electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor''. 1. April 2013, [[doi:10.1038/srep01718]], PMID 23611904.</ref> || 2013 || {{val|110|u=Wh/kg}} || || || {{val|1000|u=F/g}} || Wet electrochemical process intercalated Na(+) ions into {{chem|MnO|2}} interlayers. The nanoflake electrodes exhibit faster ionic diffusion with enhanced redox peaks.
|-
| 3D porous graphene electrode<ref>L. Zang et al., [http://europepmc.org/abstract/MED/23474952 Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors], Key Laboratory for Functional Polymer Materials and Center for Nanoscale Science and Technology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China, 2013, DOI:10.1038/srep01408</ref> || 2013 || {{val|98|u=Wh/kg}} || || || {{val|231|u=F/g}} || Wrinkled single layer graphene sheets a few nanometers in size, with at least some covalent bonds.
|-
| Graphene-based planar micro-supercapacitors for on-chip energy storage<ref>Zhong-Shuai Wu, Xinliang Feng, Hui-Ming Cheng, Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage [http://nsr.oxfordjournals.org/content/early/2013/12/21/nsr.nwt003.full.pdf+html]</ref>
||2013||2.42 Wh/l ||  ||  ||  || On chip line filtering
|-
|Quantum nanoclusters of dipolar metal oxides in {{chem|TiO|2}} or {{chem|TAO|2}}<ref>{{Ref patent|country=WO|number=2003003466|Inventor=Alexander Milhailovich|titel=Quantum supercapacitor|DB=WIPO}}</ref><ref>{{cite web|url=http://worldwide.espacenet.com/searchResults?compact=false&PN=WO2003003466&ST=advanced&locale=en_EP&DB=EPODOC |title=Espacenet - results view|publisher=Worldwide.espacenet.com |date= |accessdate=2013-05-30}}</ref><ref>{{cite web|url=http://www.faqs.org/patents/app/20090195961 |title=Method And Device For Storing Electricity In Quantum Batteries - Patent Application |publisher=Faqs.org |date= |accessdate=2013-05-30}} Inventors: Rolf Eisenring (Oberengstringen, CH), IPC8 Class: AH01G430FI, USPC Class: 3613014, Class name: Electrostatic capacitors fixed capacitor stack, Publication date: 2009-08-06, Patent application number: 20090195961</ref> || 2013|| {{val|480|u=Wh/kg}} || || || ||
|}
 
Footnote: Research into electrode materials requires measurement of individual components, such as an electrode or half-cell.<ref>A. Raut, C. Parker, and J. Glass. [http://journals.cambridge.org/action/displayAbstract;jsessionid=E26509FCBD22C7014E2BA413E1FD5B7E.journals?fromPage=online&aid=7938762 A method to obtain a Ragone plot for evaluation of carbon nanotube supercapacitor electrodes]. Journal of Materials Research Vol. 25, No. 8 (2010).</ref> By using a counterelectrode that does not affect the measurements, the characteristics of only the electrode of interest can be revealed. Energy and power densities for real supercapacitors only have more or less roughly 1/3 of the electrode density.
 
==Market==
{{As of|2010}} worldwide sales of supercapacitors reached US$400 million.<ref>{{cite web|url=http://www.greencarcongress.com/2010/11/nanomarkets-forecasts-supercapacitor-market-to-reach-3b-in-2016-decrease-in-transportation-market-sh.html |title=NanoMarkets forecasts supercapacitor market to reach $3B in 2016; decrease in transportation market share |publisher=Green Car Congress |date=2010-11-21 |accessdate=2013-05-30}}</ref>
 
The market for batteries (estimated by [[Frost & Sullivan]]) grew from US$47.5 billion, (76.4% or US$36.3 billion of which was rechargeable batteries<ref>{{cite web|url=http://batteryuniversity.com/learn/article/global_battery_markets |title=Global Battery Markets Information – Battery University |publisher=Batteryuniversity.com |date= |accessdate=2013-05-30}}</ref>) to US$95 billion.<ref>Dennis Zogbi, Paumanok Group, 04.03.2013, [http://www.ttiinc.com/object/me-zogbi-20130403.html Supercapacitors the Myth, the Potential and the Reality]</ref> The market for supercapacitors is still a small niche market that is not keeping pace with its larger rival.
 
In 2012, NanoMarkets forecast sales to grow to US$3.5 billion by 2020, an increase of about 900% within 10 years.<ref>{{cite web|author=March 16, 2012 |url=http://www.marketresearchmedia.com/?p=912 |title=Ultracapacitor Market Forecast 2015-2020 |publisher=Market Research Media |date=2012-03-16 |accessdate=2013-05-30}}</ref> Assumptions underlying this growth include a rapidly improving price/performance ratio and evolving "green energy" applications, such as energy recovery in electric vehicles. Otherwise the market was forecast to grow about 30% overall between 2013 and 2018 and remain in the hundreds of millions of dollars.
 
Supercapacitor costs in 2006 were US$0.01 per farad or US$2.85 per kilojoule, moving in 2008 below US$0.01 per farad, and were expected to drop further in the medium term.<ref>[http://batteries.foresightst.com/resources/MarketOverviews/NET0007IO.pdf T2+2™ Market Overview], Ch. Ahern, Supercapacitors, December 10, 2009, Project Number NET0007IO</ref>
 
==See also==
{{columns-list|3|
* [[Electric vehicle battery]]
* [[Types of capacitors]]
* [[Nanoflower]]
* [[Rechargeable electricity storage system]]
* [[Flywheel energy storage]]
* [[List of emerging technologies]]
* [[Lithium ion capacitor]]
* [[Self-powered equipment]]
* [[Mechanically powered flashlight]]
* [[Conjugated microporous polymer]]
* [[Capa vehicle]]
}}
 
==Literature==
*{{Literatur |Autor=Héctor D. Abruña, Yasuyuki Kiya, Jay C. Henderson|Titel=Batteries and electrochemical capacitors|Sammelwerk=[[Physics Today]] |Band=|Nummer=12|Jahr=2008|Seiten=43–47|Online=https://ecee.colorado.edu/~ecen4555/SourceMaterial/ElectricalEnerStor1208.pdf}}
*{{Literatur|Autor=J. O'M. Bockris, M. A. V. Devanathan and K. Muller|Titel= On the Structure of Charged Interfaces | Sammelwerk=Proceedings of the Royal Society|Seiten=55-79|Band=274|Nummer=1356|Jahr=1963|DOI=10.1098/rspa.1963.0114 }}
*F. Béguin, E. Raymundo-Piñero, E. Frackowiak, Carbons for Electrochemical Energy Storage and Conversion Systems, Chapter 8. Electrical Double-Layer Capacitors and Pseudocapacitors, CRC Press 2009, Pages 329–375, Print ISBN 978-1-4200-5307-4, eBook ISBN 978-1-4200-5540-5<ref>{{cite doi|10.1201/9781420055405-c8}}</ref>
*B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, ISBN=0306457369, 1999, Online={{Google Buch|BuchID=8yvzlr9TqI0C|Seite=1}}
*{{Literatur|Autor=Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu|Titel=Electrochemical Technologies for Energy Storage and Conversion, Band 1|Verlag=Wiley-VCH|Ort=Weinheim|ISBN=978-3-527-32869-7|Jahr=2011|Seiten=317-376|Online = {{Google Buch|BuchID=AN3B3L5RtqUC|Seite=317}}|Kommentar=Kapitel 8 - ''Electrochemical Supercapacitors''}}
*K. W. Leitner, M. Winter, J. O. Besenhard, Composite supercapacitor electrodes, Journal of Solid State Electrochemistry, Publisher Springer-Verlag, Volume 8, Issue 1, pp 15–16, Date 2003-12-01, {{cite doi|10.1007/s10008-003-0412-x}}, Print ISSN1432-8488, Online ISSN1433-0768,<ref>{{cite web|url=http://link.springer.com/article/10.1007%2Fs10008-003-0412-x?LI=true |title=Composite supercapacitor electrodes - Springer |publisher=Link.springer.com |date=2003-12-01 |accessdate=2013-05-24}}</ref>
*F. Ebrahimi (Editor), Nanocomposites - [http://www.intechopen.com/books/nanocomposites-new-trends-and-developments New Trends and Developments], ISBN 978-953-51-0762-0, Hard cover, 503 pages, Publisher: InTech, Chapters published September 27, 2012 under CC BY 3.0 license, {{cite doi|10.5772/3389}}
*K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, John Wiley & Sons (18. Januar 1988), ISBN 0471848026, ISBN 978-0471848028<ref>{{cite web|url=http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471848026.html |title=Wiley: Carbon: Electrochemical and Physicochemical Properties - Kim Kinoshita |publisher=Eu.wiley.com |date= |accessdate=2013-05-24}}</ref>
*Yu. M. Volfkovich, T. M. Serdyuk, Electrochemical Capacitors,  Russian Journal of Electrochemistry, September 2002, Volume 38, Issue 9, pp 935–959, 2002-09-01, {{cite doi|10.1023/A:1020220425954}}, Print ISSN 1023-1935, Online ISSN 1608-3342, Publisher Kluwer Academic Publishers-Plenum Publishers<ref>{{cite web|url=http://www.springerlink.com/content/k8715uk524h6h12w/ |title=Electrochemical Capacitors - Springer |publisher=Springerlink.com |date=2002-09-01 |accessdate=2013-05-24}}</ref>
 
==References==
{{Reflist|colwidth=30em}}
 
==External links==
* [http://electrochem.cwru.edu/encycl/art-c03-elchem-cap.htm Brian E. Conway, ELECTROCHEMICAL CAPACITORS Their Nature, Function, and Applications, An Encyclopedia Article] From the Yeager center at CWRU
*[http://uqu.edu.sa/files2/tiny_mce/plugins/filemanager/files/27/08_Appendix.pdf ELECTRIC DOUBLE LAYER AND CAPACITANCE RESPONSE, The Bockris, Devanathan and Muller model]
*[http://ocw.mit.edu/courses/chemical-engineering/10-626-electrochemical-energy-systems-spring-2011/lecture-notes/ MIT OPEN COURSEWARE, Lecture 37 and others]
*[http://archive.itee.uq.edu.au/~aupec/aupec03/papers/051%20Namisnyk%20full%20paper.pdf A SURVEY OF ELECTROCHEMICAL SUPERCAPACITOR TECHNOLOGY]
*[http://services.eng.uts.edu.au/cempe/subjects_JGZ/eet/Capstone%20thesis_AN.pdf Supercapacitors: A Brief Overview]
*[http://www.electrochemsci.org/papers/vol3/3111196.pdf Simple Capacitors to Supercapacitors - An Overview]
*[http://www.mondragon.edu/en/phs/research/research-lines/electrical-energy/news-folder/workshop/Mondragon%202012_06_22_Gallay.pdf Technologies and applications of Supercapacitors, University of Mondragon]
*[http://www.garmanage.com/atelier/root/public/Contacting/biblio.cache/PCIM2000.pdf Properties and applications of supercapacitors from the state-of-the-art to future trends]
*[http://www.icevirtuallibrary.com/docserver/fulltext/nme3-0136.html?expires=1367075349&id=id&accname=guest&checksum=4EA72F169F4580857DB1E60C24B4A1B7 Perspectives on supercapacitors, pseudocapacitors and batteries]
*[http://www.cars21.com/files/news/EVS-24-10439%20Bossche.pdf Standardization challenges for electricity storage devices]
* [http://www.ultracapacitors.org/ Ultracapacitors & Supercapacitors Forum]
 
{{Emerging technologies}}
 
{{DEFAULTSORT:Electric Double-Layer Capacitor}}
[[Category:Capacitors]]
[[Category:Emerging technologies]]
[[Category:Energy conversion]]
 
[[bg:Суперкондензатор]]
[[ca:Supercondensador]]
[[da:Superkondensator]]
[[de:Superkondensator]]
[[et:Superkondensaator]]
[[es:Supercondensador]]
[[eo:Superkondensatoro]]
[[fr:Supercondensateur]]
[[it:Supercondensatore]]
[[hu:Ultrakapacitás]]
[[ja:電気二重層コンデンサ]]
[[pl:Superkondensator]]
[[pt:Supercapacitores]]
[[ro:Supercondensator]]
[[ru:Ионистор]]
[[simple:Supercapacitor]]
[[fi:Superkondensaattori]]
[[th:ตัวเก็บประจุยิ่งยวด]]
[[uk:Іоністор]]
[[zh:双电层电容器]]

Revision as of 00:47, 9 February 2014

My name is Marisol (46 years old) and my hobbies are Skateboarding and Creative writing.

my website People search