Sparsely totient number: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Martarius
 
en>Yobot
m WP:CHECKWIKI error fixes using AWB (10093)
 
Line 1: Line 1:
{{multiple issues|
Legal Executive Renaldo from Milton, likes to spend time bonsai trees, property developers [http://simply-affordable.com/activity/p/584/ housing in singapore] singapore and yoyo. Finds the entire world an fascinating place we have spent 2 months at Ningaloo Coast.
{{Unreferenced|date=December 2009}}
{{Context|date=October 2009}}
{{Technical|date=July 2012}}
}}
 
The [[Niklaus Wirth|Wirth]]-[[Helmut Weber|Weber]] relationship between a pair of symbols <math>(V_t \cup V_n)</math> is necessary to determine if a [[formal grammar]] is a [[Simple precedence grammar]], and in such case the [[Simple precedence parser]] can be used.
 
The goal is to identify the when the [[viable prefix]]es have the '''pivot''' and must be reduced. A <math>\gtrdot</math> means that the '''pivot''' is found, a <math>\lessdot</math> means that a potential '''pivot''' is starting, and a <math>\dot =</math> means that we are still in the same '''pivot'''.
 
__TOC__
 
==Formal definition==
<math> G = <V_n, V_t, S, P> </math>
 
*  <math> X \dot = Y \iff \begin{cases} A \to \alpha X Y \beta \in P  \\  A \in V_n \\ \alpha , \beta \in (V_n \cup V_t)^* \\ X, Y \in (V_n \cup V_t) \end{cases}  </math>
 
*  <math> X \lessdot Y \iff \begin{cases} A \to \alpha X B \beta \in P \\ B \Rightarrow^+ Y \gamma \\ A, B \in V_n \\ \alpha , \beta, \gamma \in (V_n \cup V_t)^* \\ X, Y \in (V_n \cup V_t) \end{cases} </math>
 
*  <math> X \gtrdot a \iff \begin{cases} A \to \alpha B Y \beta \in P \\ B \Rightarrow^+ \gamma X \\ Y \Rightarrow^* a \delta \\ A, B \in V_n \\ \alpha , \beta, \gamma, \delta \in (V_n \cup V_t)^* \\ X, Y \in (V_n \cup V_t) \\ a \in V_t \end{cases} </math>
 
==Precedence Relations Computing Algorithm==
We will define three Sets for a symbol:
 
* <math>Head^+(X) = \{Y|X \Rightarrow^+ Y \alpha \}</math>
* <math>Tail^+(X) = \{Y|X \Rightarrow^+ \alpha Y \}</math>
* <math>Head^*(X) = (Head^+(X) \cup \{ X \}) \cap V_t</math>
<br>
''Note that Head<sup>*</sup>(X) is X if X is a terminal, and if X is a non-terminal, Head<sup>*</sup>(X) is the set with only the terminals belonging to Head<sup>+</sup>(X). This set is equivalent to  '''First-set''' or '''Fi(X)''' described in [[LL parser]]''
 
''Note that Head<sup>+</sup>(X) and Tail<sup>+</sup>(X) are <math>\empty</math> if X is a terminal.''
 
<br>
The pseudocode for computing relations is:
 
* RelationTable := <math>\empty</math>
* For each production <math> A \to \alpha \in P </math>
** For each two adjacent symbols X Y in α
*** add(RelationTable,<math>X \dot = Y</math>)
*** add(RelationTable,<math>X \lessdot Head^+(Y)</math>)
*** add(RelationTable,<math>Tail^+(X) \gtrdot Head^*(Y)</math>)
* add(RelationTable,<math>$ \lessdot Head^+(S)</math>) where S is the initial non terminal of the grammar, and $ is a limit marker
* add(RelationTable,<math>Tail^+(S) \gtrdot $ </math>) where S is the initial non terminal of the grammar, and $ is a limit marker
 
''Note that <math>\lessdot</math> and <math>\gtrdot</math> are used with sets instead of elements as they were defined, in this case you must add all the [[cartesian product]] between the sets/elements''
 
==Examples==
<math>S \to aSSb | c</math>
 
* Head+(a) = <math>\empty</math>
* Head+(S) = { a, c}
* Head+(b) = <math>\empty</math>
* Head+(c) = <math>\empty</math>
* Tail+(a) = <math>\empty</math>
* Tail+(S) = { b, c}
* Tail+(b) = <math>\empty</math>
* Tail+(c) = <math>\empty</math>
* Head*(a) = a
* Head*(S) = { a, c}
* Head*(b) = b
* Head*(c) = c
 
* <math>S \to aSSb</math>
** '''a''' Next to '''S'''
*** a <math>\dot =</math> S
*** a <math>\lessdot</math> Head+(S)
****  a <math>\lessdot</math> a
****  a <math>\lessdot</math> c
** '''S''' Next to '''S'''
*** S <math>\dot =</math> S
*** S <math>\lessdot</math> Head+(S)
****  S <math>\lessdot</math> a
****  S <math>\lessdot</math> c
*** Tail+(S) <math>\gtrdot</math> Head*(S)
****  b <math>\gtrdot</math> a
****  b <math>\gtrdot</math> c
****  c <math>\gtrdot</math> a
****  c <math>\gtrdot</math> c
** '''S''' Next to '''b'''
*** S <math>\dot =</math> b
*** Tail+(S) <math>\gtrdot</math> Head*(b)
****  b <math>\gtrdot</math> b
****  c <math>\gtrdot</math> b
* <math>S \to c</math>
** there is only one symbol, so no relation is added.
 
precedence table:
{|border="1" cellpadding="2"
| ||S||a||b||c||$
|-
|S||<math>\dot =</math>|| <math>\lessdot</math> || <math>\dot =</math> || <math>\lessdot</math>||
|-
|a||<math>\dot =</math>||<math>\lessdot</math>||  ||<math>\lessdot</math>||
|-
|b||  ||<math>\gtrdot</math>|| <math>\gtrdot</math> ||<math>\gtrdot</math>||<math>\gtrdot</math>
|-
|c||  ||<math>\gtrdot</math>||<math>\gtrdot</math>||<math>\gtrdot</math>||<math>\gtrdot</math>
|-
|$|| ||<math>\lessdot</math>||  ||<math>\lessdot</math>||
|}
 
{{DEFAULTSORT:Wirth-Weber Precedence Relationship}}
[[Category:Formal languages]]

Latest revision as of 14:02, 5 May 2014

Legal Executive Renaldo from Milton, likes to spend time bonsai trees, property developers housing in singapore singapore and yoyo. Finds the entire world an fascinating place we have spent 2 months at Ningaloo Coast.