Automorphic number: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
No edit summary
 
en>Felix116
References: Replaced no-longer-appropriate link with better version.
Line 1: Line 1:
You should understand your profit margin in cut throat competition. If only you could have someone available around the clock to provide chat support to all of those prospects visiting your website. Therefore before you get registered to some [http://www.dailymail.co.uk/home/search.html?sel=site&searchPhrase=online+dating online dating] site it is better to be aware of the fact and take proper precautionary measures for your own safety. If you are serious about meeting someone be serious about your profile and spend some time writing one. Every situation is different and requires a little trial and error. <br><br>If this is so, leave the room immediately and enter a different one in which you will feel more comfortable in. The great thing about online chatting, including voice and webcam chatting are that they involve no added costs. This is clearly not some harmless online recreation. Keep your customers happy and your business will explode beyond never before dreamed of heights. Enjoy the freedom and anonymity that phone chat lines can bring. <br><br>Now imagine what will happen when the consumers find themselves unable to also access e-mail and other services we can't live without today - and the reason is the poor network. Over time, this can boost one's intelligence and solve problems that were once described as been unsolvable. You could also look for a degree in journalism; even that helps in increasing your chances. One more advantage for you would be the option for downloading the games. Whether this occurs via an instant messaging client or simply through email, talking online is just as common as speaking on the phone.  <br><br>If you're going to date online be ready and willing to talk. You can choose how slow or fast you want things to move, and who you want to chat with, and who you do not. Even the cheesiest line has a chance of working if it has not been heard before. Chat Etiquette is seldom used by most chatters online. Various administrators across the world dealing in website administration come and share anecdotes from their experience. <br><br>You never know where you stand with a Western woman - is she interested in you or does she just want a date right now. With some dirty lines for instance if you say them wrong you could get kicked in a not very nice place. Make sure the computer your children use is in a public area in your house, like the living room, this makes it harder for online predators to establish relationship with your children. Such an appearance shows a decided lack of caring that does not warrant serious consideration from members of the online dating community. You get the best deal with the latest offers on apps.<br><br>If you adored this article and also you would like to receive more info about Alexia Chat - [http://www.alexiachat.com/ visit the next site] - please visit our own web page.
The following is a list of [[integral]]s ([[antiderivative]] functions) of [[rational function]]s.
For other types of functions, see [[lists of integrals]].
 
<!--CAUTION: before 'correcting' one of these integrals, please check that the amended integral doesn't simply differ from the existing version by a constant term. NOTE: a constant *factor* in the argument of ln() may amount to a constant term in the integral. -->
 
== Miscellaneous integrands ==
 
:<math>\int\frac{f'(x)}{f(x)} \, dx= \ln\left|f(x)\right| + C</math>
 
:<math>\int\frac{1}{x^2+a^2} \, dx = \frac{1}{a}\arctan\frac{x}{a}\,\! + C</math>
:<math>\int\frac{1}{x^2-a^2} \, dx = \begin{cases} \displaystyle -\frac{1}{a}\,\operatorname{arctanh}\frac{x}{a} = \frac{1}{2a}\ln\frac{a-x}{a+x} + C  & \text{(for }|x| < |a|\mbox{)} \\[12pt] \displaystyle -\frac{1}{a}\,\operatorname{arccoth}\frac{x}{a} = \frac{1}{2a}\ln\frac{x-a}{x+a} + C & \text{(for }|x| > |a| \mbox{)} \end{cases}</math>
 
: <math>\int \frac{dx}{x^{2^n} + 1} = \sum_{k=1}^{2^{n-1}} \left \{ \frac{1}{2^{n-1}} \left [ \sin \left(\frac{(2k -1) \pi}{2^n}\right) \arctan\left[\left(x - \cos \left(\frac{(2k -1) \pi}{2^n} \right) \right ) \csc \left(\frac{(2k -1) \pi}{2^n} \right) \right] \right] - \frac{1}{2^n} \left [ \cos \left(\frac{(2k -1) \pi}{2^n} \right) \ln \left | x^2 - 2 x \cos \left(\frac{(2k -1) \pi}{2^n} \right) + 1 \right |  \right ] \right \} + C </math>
<br />
Any rational function can be integrated using '''[[partial fractions in integration]]''', by decomposing the rational function into a sum of functions of the form:
: <math>\frac{a}{(x-b)^n}</math>, and <math>\frac{ax + b}{\left((x-c)^2+d^2\right)^n}.</math>
 
== Integrands of the form ''x''<sup>''m''</sup>(''a x'' + ''b'')<sup>''n''</sup> ==
 
:<math>\int\frac{1}{ax + b} \, dx= \frac{1}{a}\ln\left|ax + b\right| + C</math>
::More generally,<ref>"[http://golem.ph.utexas.edu/category/2012/03/reader_survey_logx_c.html Reader Survey: log|''x''| + ''C'']", Tom Leinster, ''The ''n''-category Café'', March 19, 2012</ref>
::<math>\int\frac{1}{ax + b} \, dx= \begin{cases}
\frac{1}{a}\ln\left|ax + b\right| + C^- & x < -b/a \\
\frac{1}{a}\ln\left|ax + b\right| + C^+ & x > -b/a
\end{cases}</math>
:<math>\int (ax + b)^n \, dx= \frac{(ax + b)^{n+1}}{a(n + 1)} + C \qquad\text{(for } n\neq -1\mbox{)}\,\!</math> ([[Cavalieri's quadrature formula]])
<br>
:<math>\int\frac{x}{ax + b} \, dx= \frac{x}{a} - \frac{b}{a^2}\ln\left|ax + b\right| + C</math>
:<math>\int\frac{x}{(ax + b)^2} \, dx= \frac{b}{a^2(ax + b)} + \frac{1}{a^2}\ln\left|ax + b\right| + C</math>
:<math>\int\frac{x}{(ax + b)^n} \, dx= \frac{a(1 - n)x - b}{a^2(n - 1)(n - 2)(ax + b)^{n-1}} + C \qquad\text{(for } n\not\in \{1, 2\}\mbox{)}</math>
:<math>\int x(ax + b)^n \, dx= \frac{a(n + 1)x - b}{a^2(n + 1)(n + 2)} (ax + b)^{n+1} + C \qquad\text{(for }n \not\in \{-1, -2\}\mbox{)}</math>
<br>
:<math>\int\frac{x^2}{ax + b} \, dx= \frac{b^2\ln(\left|ax + b\right|)}{a^3}+\frac{ax^2 - 2bx}{2a^2} + C</math>
:<math>\int\frac{x^2}{(ax + b)^2} \, dx= \frac{1}{a^3}\left(ax - 2b\ln\left|ax + b\right| - \frac{b^2}{ax + b}\right) + C</math>
:<math>\int\frac{x^2}{(ax + b)^3} \, dx= \frac{1}{a^3}\left(\ln\left|ax + b\right| + \frac{2b}{ax + b} - \frac{b^2}{2(ax + b)^2}\right) + C</math>
:<math>\int\frac{x^2}{(ax + b)^n} \, dx= \frac{1}{a^3}\left(-\frac{(ax + b)^{3-n}}{(n-3)} + \frac{2b (ax + b)^{2-n}}{(n-2)} - \frac{b^2 (ax + b)^{1-n}}{(n - 1)}\right) + C \qquad\text{(for } n\not\in \{1, 2, 3\}\mbox{)}</math>
<br>
:<math>\int\frac{1}{x(ax + b)} \, dx = -\frac{1}{b}\ln\left|\frac{ax+b}{x}\right| + C</math>
:<math>\int\frac{1}{x^2(ax+b)} \, dx = -\frac{1}{bx} + \frac{a}{b^2}\ln\left|\frac{ax+b}{x}\right| + C</math>
:<math>\int\frac{1}{x^2(ax+b)^2} \, dx = -a\left(\frac{1}{b^2(ax+b)} + \frac{1}{ab^2x} - \frac{2}{b^3}\ln\left|\frac{ax+b}{x}\right|\right) + C</math>
 
== Integrands of the form ''x''<sup>''m''</sup> / (''a x''<sup>2</sup> + ''b x'' + ''c'')<sup>''n''</sup> ==
 
For <math>a\neq 0:</math>
<br>
:<math>\int\frac{1}{ax^2+bx+c} dx =
\begin{cases}
\displaystyle \frac{2}{\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} + C & \text{(for }4ac-b^2>0\mbox{)} \\[12pt]
\displaystyle -\frac{2}{\sqrt{b^2-4ac}}\,\mathrm{arctanh}\frac{2ax+b}{\sqrt{b^2-4ac}} + C = \frac{1}{\sqrt{b^2-4ac}}\ln\left|\frac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}}\right| + C & \text{(for }4ac-b^2<0\mbox{)} \\[12pt]
\displaystyle -\frac{2}{2ax+b} + C & \text{(for }4ac-b^2=0\mbox{)}
\end{cases}</math>
<br>
:<math>\int\frac{x}{ax^2+bx+c} \, dx = \frac{1}{2a}\ln\left|ax^2+bx+c\right|-\frac{b}{2a}\int\frac{dx}{ax^2+bx+c} + C</math>
<br>
:<math>\int\frac{mx+n}{ax^2+bx+c} \, dx = \begin{cases}
\displaystyle \frac{m}{2a}\ln\left|ax^2+bx+c\right|+\frac{2an-bm}{a\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} + C &\text{(for }4ac-b^2>0\mbox{)} \\[12pt] \displaystyle \frac{m}{2a}\ln\left|ax^2+bx+c\right|-\frac{2an-bm}{a\sqrt{b^2-4ac}}\,\mathrm{arctanh}\frac{2ax+b}{\sqrt{b^2-4ac}} + C &\text{(for }4ac-b^2<0\mbox{)} \\[12pt] \displaystyle \frac{m}{2a}\ln\left|ax^2+bx+c\right|-\frac{2an-bm}{a(2ax+b)} + C &\text{(for }4ac-b^2=0\mbox{)}\end{cases}</math>
<br>
: <math>\int\frac{1}{(ax^2+bx+c)^n} \, dx= \frac{2ax+b}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}+\frac{(2n-3)2a}{(n-1)(4ac-b^2)}\int\frac{1}{(ax^2+bx+c)^{n-1}} \, dx + C</math>
<br>
: <math>\int\frac{x}{(ax^2+bx+c)^n} \, dx= -\frac{bx+2c}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}-\frac{b(2n-3)}{(n-1)(4ac-b^2)}\int\frac{1}{(ax^2+bx+c)^{n-1}} \, dx + C</math>
<br>
: <math>\int\frac{1}{x(ax^2+bx+c)} \, dx= \frac{1}{2c}\ln\left|\frac{x^2}{ax^2+bx+c}\right|-\frac{b}{2c}\int\frac{1}{ax^2+bx+c} \, dx + C</math>
 
== Integrands of the form ''x''<sup>''m''</sup> (''a'' + ''b x''<sup>''n''</sup>)<sup>''p''</sup> ==
* The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0.
* These reduction formulas can be used for integrands having integer and/or fractional exponents.
 
:<math>
\int x^m \left(a+b\,x^n\right)^p dx =
  \frac{x^{m+1} \left(a+b\,x^n\right)^p}{m+n\,p+1}\,+\,
  \frac{a\,n\,p}{m+n\,p+1}\int x^m \left(a+b\,x^n\right)^{p-1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n\right)^p dx =
  -\frac{x^{m+1} \left(a+b\,x^n\right)^{p+1}}{a\,n (p+1)}\,+\,
  \frac{m+n (p+1)+1}{a\,n (p+1)}\int x^m \left(a+b\,x^n\right)^{p+1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n\right)^p dx =
  \frac{x^{m+1} \left(a+b\,x^n\right)^p}{m+1}\,-\,
  \frac{b\,n\,p}{m+1}\int x^{m+n} \left(a+b\,x^n\right)^{p-1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n\right)^p dx =
  \frac{x^{m-n+1} \left(a+b\,x^n\right)^{p+1}}{b\,n (p+1)}\,-\,
  \frac{m-n+1}{b\,n (p+1)}\int x^{m-n} \left(a+b\,x^n\right)^{p+1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n\right)^p dx =
  \frac{x^{m-n+1} \left(a+b\,x^n\right)^{p+1}}{b (m+n\,p+1)}\,-\,
  \frac{a (m-n+1)}{b (m+n\,p+1)}\int x^{m-n}\left(a+b\,x^n\right)^pdx
</math>
 
:<math>
\int x^m \left(a+b\,x^n\right)^p dx =
  \frac{x^{m+1} \left(a+b\,x^n\right)^{p+1}}{a (m+1)}\,-\,
  \frac{b (m+n (p+1)+1)}{a (m+1)}\int x^{m+n}\left(a+b\,x^n\right)^pdx
</math>
 
== Integrands of the form (''A'' + ''B x'') (''a'' + ''b x'')<sup>''m''</sup> (''c'' + ''d x'')<sup>''n''</sup> (''e'' + ''f x'')<sup>''p''</sup> ==
* The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'', ''n'' and ''p'' toward 0.
* These reduction formulas can be used for integrands having integer and/or fractional exponents.
* Special cases of these reductions formulas can be used for integrands of the form <math>(a+b\,x)^m (c+d\,x)^n (e+f\,x)^p</math> by setting ''B'' to 0.
 
:<math>
\int (A+B\,x) (a+b\,x)^m (c+d\,x)^n (e+f\,x)^p dx=
  -\frac{(A\,b-a\,B)(a+b\,x)^{m+1} (c+d\,x)^n(e+f\,x)^{p+1}}{b (m+1) (a\,f-b\,e)}\,+\,
  \frac{1}{b (m+1) (a\,f-b\,e)}\,\cdot
</math><blockquote><math>
  \int (b\,c(m+1) (A\,f-B\,e)+(A\,b-a\,B) (n\,d\,e+c\,f(p+1))+d(b(m+1) (A\,f-B\,e)+f(n+p+1) (A\,b-a\,B))x)(a+b\,x)^{m+1} (c+d\,x)^{n-1}(e+f\,x)^p dx
</math></blockquote>
 
:<math>
\int (A+B\,x) (a+b\,x)^m (c+d\,x)^n (e+f\,x)^p dx=
  \frac{B(a+b\,x)^m (c+d\,x)^{n+1}(e+f\,x)^{p+1}}{d\,f(m+n+p+2)}\,+\,
  \frac{1}{d\,f(m+n+p+2)}\,\cdot
</math><blockquote><math>
  \int (A\,a\,d\,f(m+n+p+2)-B (b\,c\,e\,m+a(d\,e(n+1)+c\,f(p+1)))+(A\,b\,d\,f(m+n+p+2)+B (a\,d\,f\,m-b(d\,e(m+n+1)+c\,f(m+p+1)))) x)(a+b\,x)^{m-1} (c+d\,x)^n(e+f\,x)^p dx
</math></blockquote>
 
:<math>
\int (A+B\,x) (a+b\,x)^m (c+d\,x)^n (e+f\,x)^p dx=
  \frac{(A\,b-a\,B)(a+b\,x)^{m+1} (c+d\,x)^{n+1}(e+f\,x)^{p+1}}{(m+1)(a\,d-b\,c)(a\,f-b\,e)}\,+\,
  \frac{1}{(m+1)(a\,d-b\,c)(a\,f-b\,e)}\,\cdot
</math><blockquote><math>
  \int ((m+1) (A (a\,d\,f-b(c\,f+d\,e))+B\,b\,c\,e)-(A\,b-a\,B) (d\,e(n+1)+c\,f(p+1))-d\,f(m+n+p+3) (A\,b-a\,B)x)(a+b\,x)^{m+1} (c+d\,x)^n(e+f\,x)^p dx
</math></blockquote>
 
== Integrands of the form ''x''<sup>''m''</sup> (''A'' + ''B x''<sup>''n''</sup>) (''a'' + ''b x''<sup>''n''</sup>)<sup>''p''</sup> (''c'' + ''d x''<sup>''n''</sup>)<sup>''q''</sup> ==
* The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'', ''p'' and ''q'' toward 0.
* These reduction formulas can be used for integrands having integer and/or fractional exponents.
* Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^q</math> and <math>x^m\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^q</math> by setting ''m'' and/or ''B'' to 0.
 
:<math>
\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
  -\frac{(A\,b-a\,B) x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^q}{a\,b\,n (p+1)}\,+\,
  \frac{1}{a\,b\,n (p+1)}\,\cdot
</math><blockquote><math>
  \int x^m\left(c (A\,b\,n (p+1)+(A\,b-a\,B) (m+1))+d (A\,b\,n (p+1)+(A\,b-a\,B) (m+n\,q+1)) x^n\right)\left(a+b\,x^n\right)^{p+1}\left(c+d\,x^n\right)^{q-1}dx
</math></blockquote>
 
:<math>
\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
  \frac{B\,x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^q}{b (m+n (p+q+1)+1)}\,+\,
  \frac{1}{b (m+n (p+q+1)+1)}\,\cdot
</math><blockquote><math>
  \int x^m\left(c ((A\,b-a\,B) (1+m)+A\,b\,n (1+p+q))+(d(A\,b-a\,B) (1+m)+B\,n\,q(b\,c-a\,d)+A\,b\,d\,n (1+p+q))\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^{q-1}dx
</math></blockquote>
 
:<math>
\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
  -\frac{(A\,b-a\,B) x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^{q+1}}{a\,n (b\,c-a\,d) (p+1)}\,+\,
  \frac{1}{a\,n(b\,c-a\,d)(p+1)}\,\cdot
</math><blockquote><math>
  \int x^m\left(c(A\,b-a\,B)(m+1)+A\,n (b\,c-a\,d)(p+1)+d(A\,b-a\,B) (m+n (p+q+2)+1) x^n\right)\left(a+b\,x^n\right)^{p+1}\left(c+d\,x^n\right)^qdx
</math></blockquote>
 
:<math>
\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
  \frac{B\,x^{m-n+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^{q+1}}{b\,d (m+n (p+q+1)+1)}\,-\,
  \frac{1}{b\,d (m+n (p+q+1)+1)}\,\cdot
</math><blockquote><math>
  \int x^{m-n}\left(a\,B\,c (m-n+1)+(a\,B\,d (m+n\,q+1)-b (-B\,c (m+n\,p+1)+A\,d (m+n (p+q+1)+1))) x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx
</math></blockquote>
 
:<math>
\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
  \frac{A\,x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^{q+1}}{a\,c (m+1)}\,+\,
  \frac{1}{a\,c (m+1)}\,\cdot
</math><blockquote><math>
  \int x^{m+n}\left(a\,B\,c (m+1)-A (b\,c+a\,d) (m+n+1)-A\,n (b\,c\,p+a\,d\,q)-A\,b\,d (m+n (p+q+2)+1) x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx
</math></blockquote>
 
:<math>
\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
  \frac{A\,x^{m+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^q}{a (m+1)}\,-\,
  \frac{1}{a (m+1)}\,\cdot
</math><blockquote><math>
  \int x^{m+n}\left(c(A\,b-a\,B)(m+1)+A\,n (b\,c (p+1)+a\,d\,q)+d ((A\,b-a\,B) (m+1)+A\,b\,n (p+q+1)) x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^{q-1}dx
</math></blockquote>
 
:<math>
\int x^m\left(A+B\,x^n\right)\left(a+b\,x^n\right)^p\left(c+d\,x^n\right)^qdx=
  \frac{(A\,b-a\,B) x^{m-n+1} \left(a+b\,x^n\right)^{p+1} \left(c+d\,x^n\right)^{q+1}}{b\,n (b\,c-a\,d) (p+1)}\,-\,
  \frac{1}{b\,n(b\,c-a\,d)(p+1)}\,\cdot
</math><blockquote><math>
  \int x^{m-n}\left(c(A\,b-a\,B)(m-n+1)+(d(A\,b-a\,B)(m+n\,q+1)-b\,n(B\,c-A\,d)(p+1)) x^n\right)\left(a+b\,x^n\right)^{p+1}\left(c+d\,x^n\right)^qdx
</math></blockquote>
 
== Integrands of the form (''d'' + ''e x'')<sup>''m''</sup> (''a'' + ''b x'' + ''c x''<sup>2</sup>)<sup>''p''</sup> when ''b''<sup>2</sup> − 4 ''a c'' = 0 ==
* The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0.
* These reduction formulas can be used for integrands having integer and/or fractional exponents.
* Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x+c\,x^2\right)^p</math> when <math>b^2-4\,a\,c=0</math> by setting ''m'' to 0.
 
:<math>
\int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{(d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^p}{e(m+1)}\,-\,
  \frac{p (d+e\,x)^{m+2}(b+2 c\,x) \left(a+b\,x+c\,x^2\right)^{p-1}}{e^2(m+1)(m+2 p+1)}\,+\,
  \frac{p(2 p-1)(2 c\,d-b\,e)}{e^2(m+1)(m+2 p+1)} \int (d+e\,x)^{m+1}\left(a+b\,x+c\,x^2\right)^{p-1}dx
</math>
 
:<math>
\int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{(d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^p}{e(m+1)}\,-\,
  \frac{p (d+e\,x)^{m+2}(b+2\,c\,x)\left(a+b\,x+c\,x^2\right)^{p-1}}{e^2(m+1)(m+2)}\,+\,
  \frac{2\,c\,p\,(2\,p-1)}{e^2(m+1)(m+2)} \int (d+e\,x)^{m+2} \left(a+b\,x+c\,x^2\right)^{p-1}dx
</math>
 
:<math>
\int (d+e\,x)^m\left(a+b\,x+c\,x^2\right)^pdx=
  -\frac{e(m+2 p+2)(d+e\,x)^m \left(a+b\,x+c\,x^2\right)^{p+1}}{(p+1)(2p+1)(2 c\,d-b\,e)}\,+\,
  \frac{(d+e\,x)^{m+1}(b+2 c\,x) \left(a+b\,x+c\,x^2\right)^p}{(2p+1)(2 c\,d-b\,e)}\,+\,
  \frac{e^2m(m+2 p+2)}{(p+1)(2p+1)(2 c\,d-b\,e)} \int (d+e\,x)^{m-1} \left(a+b\,x+c\,x^2\right)^{p+1}dx
</math>
 
:<math>
\int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
  -\frac{e\,m(d+e\,x)^{m-1} \left(a+b\,x+c\,x^2\right)^{p+1}}{2c (p+1) (2p+1)}\,+\,
  \frac{(d+e\,x)^m(b+2 c\,x)\left(a+b\,x+c\,x^2\right)^p}{2c (2p+1)}\,+\,
  \frac{e^2m(m-1)}{2c (p+1) (2p+1)} \int (d+e\,x)^{m-2} \left(a+b\,x+c\,x^2\right)^{p+1}dx
</math>
 
:<math>
\int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{(d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^p}{e(m+2p+1)}\,-\,
  \frac{p(2 c\,d-b\,e)(d+e\,x)^{m+1}(b+2 c\,x)\left(a+b\,x+c\,x^2\right)^{p-1}}{2c\,e^2(m+2 p)(m+2p+1)}\,+\,
  \frac{p (2 p-1)(2 c\,d-b\,e)^2}{2c\,e^2(m+2 p)(m+2p+1)} \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^{p-1}dx
</math>
 
:<math>
\int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
  -\frac{2c\,e(m+2p+2)(d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^{p+1}}{(p+1) (2 p+1)(2 c\,d-b\,e)^2}\,+\,
  \frac{(d+e\,x)^{m+1}(b+2 c\,x)\left(a+b\,x+c\,x^2\right)^p}{(2 p+1)(2 c\,d-b\,e)}\,+\,
  \frac{2c\,e^2(m+2p+2)(m+2 p+3)}{(p+1) (2 p+1)(2 c\,d-b\,e)^2} \int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^{p+1}dx
</math>
 
:<math>
\int (d+e\,x)^m \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{(d+e\,x)^m (b+2 c\,x)\left(a+b\,x+c\,x^2\right)^p}{2c (m+2p+1)}\,+\,
  \frac{m(2 c\,d-b\,e)}{2c (m+2p+1)} \int (d+e\,x)^{m-1}\left(a+b\,x+c\,x^2\right)^pdx
</math>
 
:<math>
\int (d+e\,x)^m\left(a+b\,x+c\,x^2\right)^pdx=
  -\frac{(d+e\,x)^{m+1} (b+2 c\,x)\left(a+b\,x+c\,x^2\right)^p}{(m+1)(2 c\,d-b\,e)}\,+\,
  \frac{2c (m+2p+2)}{(m+1)(2 c\,d-b\,e)} \int (d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^pdx
</math>
 
== Integrands of the form (''d'' + ''e x'')<sup>''m''</sup> (''A'' + ''B x'') (''a'' + ''b x'' + ''c x''<sup>2</sup>)<sup>''p''</sup> ==
* The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0.
* These reduction formulas can be used for integrands having integer and/or fractional exponents.
* Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x+c\,x^2\right)^p</math> and <math>(d+e\,x)^m \left(a+b\,x+c\,x^2\right)^p</math> by setting ''m'' and/or ''B'' to 0.
 
:<math>
\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{(d+e\,x)^{m+1} (A\,e (m+2 p+2)-B\,d (2 p+1)+e\,B (m+1) x) \left(a+b\,x+c\,x^2\right)^p}{e^2(m+1) (m+2 p+2)}\,+\,
  \frac{1}{e^2(m+1) (m+2 p+2)}p\,\cdot
</math><blockquote><math>
  \int (d+e\,x)^{m+1} (B (b\,d+2 a\,e+2 a\,e\,m+2 b\,d\,p)-A\,b\,e (m+2 p+2)+(B (2 c\,d+b\,e+b\,e m+4 c\,d\,p)-2 A\,c\,e (m+2 p+2))x)\left(a+b\,x+c\,x^2\right)^{p-1}dx
</math></blockquote>
 
:<math>
\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{(d+e\,x)^m (A\,b-2 a\,B-(b\,B-2 A\,c) x)\left(a+b\,x+c\,x^2\right)^{p+1}}{(p+1)\left(b^2-4 a\,c\right) }\,+\,
  \frac{1}{(p+1)\left(b^2-4 a\,c\right) }\,\cdot
</math><blockquote><math>
  \int (d+e\,x)^{m-1}(B (2 a\,e\,m+b\,d (2 p+3))-A (b\,e\,m+2 c\,d (2 p+3))+e(b\,B-2 A\,c) (m+2 p+3) x)\left(a+b\,x+c\,x^2\right)^{p+1}dx
</math></blockquote>
 
:<math>
\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{(d+e\,x)^{m+1} (A\,c\,e (m+2 p+2)-B (c\,d+2 c\,d\,p-b\,e\,p)+B\,c\,e(m+2 p+1) x)\left(a+b\,x+c\,x^2\right)^p}{c\,e^2(m+2 p+1) (m+2 p+2)}\,-\,
  \frac{p}{c\,e^2(m+2 p+1) (m+2 p+2)}\,\cdot
</math><blockquote><math>
  \int (d+e\,x)^m (A\,c\,e (b\,d-2 a\,e) (m+2 p+2)+B (a\,e (b\,e-2 c\,d\,m+b\,e\,m)+b\,d (b\,e\,p-c\,d-2 c\,d\,p))+
</math><blockquote><math>
  \left(A\,c\,e (2 c\,d-b\,e) (m+2 p+2)-B \left(-b^2 e^2 (m+p+1)+2 c^2 d^2 (1+2 p)+c\,e (b\,d (m-2 p)+2 a\,e (m+2 p+1))\right)\right) x)\left(a+b\,x+c\,x^2\right)^{p-1}dx
</math></blockquote></blockquote>
 
:<math>
\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{(d+e\,x)^{m+1} \left(A \left(b\,c\,d-b^2 e+2 a\,c\,e\right)-a\,B (2 c\,d-b\,e)+c (A (2 c\,d-b\,e)-B (b\,d-2 a\,e)) x\right)\left(a+b\,x+c\,x^2\right)^{p+1}}{(p+1)\left(b^2-4 a\,c\right) \left(c\,d^2-b\,d\,e+a\,e^2\right)}\,+\,
</math><blockquote><math>
  \frac{1}{(p+1)\left(b^2-4 a\,c\right) \left(c\,d^2-b\,d\,e+a\,e^2\right)}\,\cdot
</math><blockquote><math>
  \int (d+e\,x)^m (A \left(b\,c\,d\,e (2 p-m+2)+b^2 e^2 (m+p+2)-2 c^2 d^2 (3+2 p)-2 a\,c\,e^2 (m+2 p+3)\right)-
</math><blockquote><math>
  B (a\,e (b\,e-2 c\,d m+b\,e\,m)+b\,d (-3 c\,d+b\,e-2 c\,d\,p+b\,e\,p))+c\,e(B (b\,d-2 a\,e)-A (2 c\,d-b\,e)) (m+2 p+4) x)\left(a+b\,x+c\,x^2\right)^{p+1}dx
</math></blockquote></blockquote></blockquote>
 
:<math>
\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
  \frac{B(d+e\,x)^m\left(a+b\,x+c\,x^2\right)^{p+1}}{c(m+2 p+2)}\,+\,
  \frac{1}{c(m+2 p+2)}\,\cdot
</math><blockquote><math>
  \int (d+e\,x)^{m-1} (m(A\,c\,d-a\,B\,e)-d(b\,B-2 A\,c)(p+1) +((B\,c\,d-b\,B\,e+A\,c\,e) m-e(b\,B-2 A\,c)(p+1))x) \left(a+b\,x+c\,x^2\right)^pdx
</math></blockquote>
 
:<math>
\int (d+e\,x)^m (A+B\,x) \left(a+b\,x+c\,x^2\right)^pdx=
  -\frac{(B\,d-A\,e) (d+e\,x)^{m+1} \left(a+b\,x+c\,x^2\right)^{p+1}}{(m+1)\left(c\,d^2-b\,d\,e+a\,e^2\right)}\,+\,
  \frac{1}{(m+1)\left(c\,d^2-b\,d\,e+a\,e^2\right)}\,\cdot
</math><blockquote><math>
  \int (d+e\,x)^{m+1} ((A\,c\,d-A\,b\,e+a\,B\,e) (m+1)+b (B\,d-A\,e) (p+1)+c (B\,d-A\,e) (m+2 p+3) x)\left(a+b\,x+c\,x^2\right)^pdx
</math></blockquote>
 
== Integrands of the form ''x''<sup>''m''</sup> (''a'' + ''b x''<sup>''n''</sup> + ''c x''<sup>2''n''</sup>)<sup>''p''</sup> when ''b''<sup>2</sup> − 4 ''a c'' = 0 ==
* The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0.
* These reduction formulas can be used for integrands having integer and/or fractional exponents.
* Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x^n+c\,x^{2 n}\right)^p</math> when <math>b^2-4\,a\,c=0</math> by setting ''m'' to 0.
 
:<math>
\int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
  \frac{ x^{m+1}\left(a+b\,x^n+c\,x^{2 n}\right)^p}{m+2 n\,p+1}\,+\,
  \frac{n\,p\,x^{m+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}}{(m+1)(m+2 n\,p+1)}\,-\,
  \frac{b\,n^2 p (2 p-1)}{(m+1)(m+2 n\,p+1)} \int x^{m+n} \left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
  \frac{(m+n(2 p-1)+1) x^{m+1}\left(a+b\,x^n+c\,x^{2 n}\right)^p}{(m+1)(m+n+1)}\,+\,
  \frac{n\,p\,x^{m+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}}{(m+1)(m+n+1)}\,+\,
  \frac{2 c\,p\,n^2(2 p-1)}{(m+1)(m+n+1)} \int x^{m+2n} \left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
  \frac{(m+n(2 p+1)+1) x^{m-n+1}\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{b\,n^2 (p+1) (2p+1)}\,-\,
  \frac{x^{m+1} \left(b+2 c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{b\,n (2p+1)}\,-\,
  \frac{(m-n+1)(m+n(2 p+1)+1)}{b\,n^2 (p+1) (2p+1)} \int x^{m-n} \left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
  -\frac{(m-3 n-2 n\,p+1) x^{m-2n+1}\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{2 c\,n^2(p+1)(2p+1)}\,-\,
  \frac{ x^{m-2n+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{2 c\,n(2p+1)}\,+\,
  \frac{(m-n+1)(m-2n+1)}{2 c\,n^2(p+1)(2p+1)} \int x^{m-2n} \left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
  \frac{x^{m+1}\left(a+b\,x^n+c\,x^{2 n}\right)^p}{m+2 n\,p+1}\,+\,
  \frac{n\,p\,x^{m+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}}{(m+2 n\,p+1) (m+n(2 p-1)+1)}\,+\,
  \frac{2 a\,n^2 p (2 p-1)}{(m+2 n\,p+1) (m+n(2 p-1)+1)} \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx
</math>
 
:<math>
\int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
  -\frac{(m+n+2 n\,p+1) x^{m+1}\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{2 a\,n^2 (p+1) (2p+1)}\,-\,
  \frac{x^{m+1} \left(2 a+b\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{2 a\,n(2p+1)}\,+\,
  \frac{(m+n(2 p+1)+1)(m+2 n (p+1)+1)}{2 a\,n^2 (p+1) (2p+1)} \int x^m \left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx
</math>
 
:<math>
\int x^m\left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
  \frac{x^{m-n+1} \left(b+2c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{2c (m+2n\,p+1)}\,-\,
  \frac{b (m-n+1)}{2c (m+2n\,p+1)} \int x^{m-n} \left(a+b\,x^n+c\,x^{2 n}\right)^p dx
</math>
 
:<math>
\int x^m\left(a+b\,x^n+c\,x^{2 n}\right)^p dx=
  \frac{x^{m+1} \left(b+2c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{b (m+1)}\,-\,
  \frac{2c (m+n(2 p+1)+1)}{b (m+1)} \int x^{m+n} \left(a+b\,x^n+c\,x^{2 n}\right)^p dx
</math>
 
== Integrands of the form ''x''<sup>''m''</sup> (''A'' + ''B x''<sup>''n''</sup>) (''a'' + ''b x''<sup>''n''</sup> + ''c x''<sup>2''n''</sup>)<sup>''p''</sup> ==
* The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents ''m'' and ''p'' toward 0.
* These reduction formulas can be used for integrands having integer and/or fractional exponents.
* Special cases of these reductions formulas can be used for integrands of the form <math>\left(a+b\,x^n+c\,x^{2 n}\right)^p</math> and <math>x^m \left(a+b\,x^n+c\,x^{2 n}\right)^p</math> by setting ''m'' and/or ''B'' to 0.
 
:<math>
\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
  \frac{x^{m+1} \left(A (m+n (2 p+1)+1)+B (m+1) x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^p}{(m+1) (m+n (2 p+1)+1)}\,+\,
  \frac{n\,p}{(m+1) (m+n (2 p+1)+1)}\,\cdot
</math><blockquote><math>
  \int x^{m+n} \left(2 a\,B (m+1)-A\,b (m+n (2 p+1)+1)+(b\,B (m+1)-2\,A\,c (m+n (2 p+1)+1)) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx
</math></blockquote>
 
:<math>
\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
  \frac{x^{m-n+1} \left(A\,b-2 a\,B-(b\,B-2 A\,c) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{n(p+1) \left(b^2-4 a\,c\right)}\,+\,
  \frac{1}{n(p+1) \left(b^2-4 a\,c\right)}\,\cdot
</math><blockquote><math>
  \int x^{m-n}\left((m-n+1)(2 a\,B-A\,b)+(m+2n (p+1)+1) (b\,B-2 A\,c) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx
</math></blockquote>
 
:<math>
\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
  \frac{x^{m+1} \left(b\,B\,n\,p+A\,c (m+n (2 p+1)+1)+B\,c (m+2 n\,p+1) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^p}{c (m+2 n\,p+1) (m+n (2 p+1)+1)}\,+\,
  \frac{n\,p}{c (m+2 n\,p+1) (m+n (2 p+1)+1)}\,\cdot
</math><blockquote><math>
  \int x^m \left(2 a\,A\,c (m+n (2 p+1)+1)-a\,b\,B (m+1)+\left(2 a\,B\,c (m+2 n\,p+1)+A\,b\,c (m+n (2 p+1)+1)-b^2 B (m+n\,p+1)\right) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p-1}dx
</math></blockquote>
 
:<math>
\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
  -\frac{x^{m+1} \left(A\,b^2-a\,b\,B-2 a\,A\,c+(A\,b-2 a\,B) c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{a\,n(p+1) \left(b^2-4 a\,c\right)}\,+\,
  \frac{1}{a\,n(p+1) \left(b^2-4 a\,c\right)}\,\cdot
</math><blockquote><math>
  \int x^m \left((m+n (p+1)+1) A\,b^2-a\,b\,B(m+1)-2(m+2n (p+1)+1)a\,A\,c+(m+n (2p+3)+1)(A\,b-2 a\,B) c\,x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}dx
</math></blockquote>
 
:<math>
\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
  \frac{B\,x^{m-n+1}\left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{c (m+n (2 p+1)+1)}\,-\,
  \frac{1}{c (m+n (2 p+1)+1)}\,\cdot
</math><blockquote><math>
  \int x^{m-n} \left(a\,B (m-n+1)+(b\,B (m+n\,p+1)-A\,c (m+n (2 p+1)+1)) x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx
</math></blockquote>
 
:<math>
\int x^m \left(A+B\,x^n\right) \left(a+b\,x^n+c\,x^{2 n}\right)^pdx=
  \frac{A\,x^{m+1} \left(a+b\,x^n+c\,x^{2 n}\right)^{p+1}}{a(m+1)}\,+\,
  \frac{1}{a(m+1)}\,\cdot
</math><blockquote><math>
  \int x^{m+n} \left(a\,B (m+1)-A\,b (m+n (p+1)+1)-A\,c (m+2 n(p+1)+1) x^n\right)\left(a+b\,x^n+c\,x^{2 n}\right)^pdx
</math></blockquote>
 
== References ==
{{reflist}}
 
{{Lists of integrals}}
 
[[Category:Integrals|Rational functions]]
[[Category:Mathematics-related lists|Integrals of rational functions]]

Revision as of 16:35, 26 January 2014

The following is a list of integrals (antiderivative functions) of rational functions. For other types of functions, see lists of integrals.


Miscellaneous integrands

f(x)f(x)dx=ln|f(x)|+C
1x2+a2dx=1aarctanxa+C
1x2a2dx={1aarctanhxa=12alnaxa+x+C(for |x|<|a|)1aarccothxa=12alnxax+a+C(for |x|>|a|)
dxx2n+1=k=12n1{12n1[sin((2k1)π2n)arctan[(xcos((2k1)π2n))csc((2k1)π2n)]]12n[cos((2k1)π2n)ln|x22xcos((2k1)π2n)+1|]}+C


Any rational function can be integrated using partial fractions in integration, by decomposing the rational function into a sum of functions of the form:

a(xb)n, and ax+b((xc)2+d2)n.

Integrands of the form xm(a x + b)n

1ax+bdx=1aln|ax+b|+C
More generally,[1]
1ax+bdx={1aln|ax+b|+Cx<b/a1aln|ax+b|+C+x>b/a
(ax+b)ndx=(ax+b)n+1a(n+1)+C(for n1) (Cavalieri's quadrature formula)


xax+bdx=xaba2ln|ax+b|+C
x(ax+b)2dx=ba2(ax+b)+1a2ln|ax+b|+C
x(ax+b)ndx=a(1n)xba2(n1)(n2)(ax+b)n1+C(for n∉{1,2})
x(ax+b)ndx=a(n+1)xba2(n+1)(n+2)(ax+b)n+1+C(for n∉{1,2})


x2ax+bdx=b2ln(|ax+b|)a3+ax22bx2a2+C
x2(ax+b)2dx=1a3(ax2bln|ax+b|b2ax+b)+C
x2(ax+b)3dx=1a3(ln|ax+b|+2bax+bb22(ax+b)2)+C
x2(ax+b)ndx=1a3((ax+b)3n(n3)+2b(ax+b)2n(n2)b2(ax+b)1n(n1))+C(for n∉{1,2,3})


1x(ax+b)dx=1bln|ax+bx|+C
1x2(ax+b)dx=1bx+ab2ln|ax+bx|+C
1x2(ax+b)2dx=a(1b2(ax+b)+1ab2x2b3ln|ax+bx|)+C

Integrands of the form xm / (a x2 + b x + c)n

For a0:

1ax2+bx+cdx={24acb2arctan2ax+b4acb2+C(for 4acb2>0)2b24acarctanh2ax+bb24ac+C=1b24acln|2ax+bb24ac2ax+b+b24ac|+C(for 4acb2<0)22ax+b+C(for 4acb2=0)


xax2+bx+cdx=12aln|ax2+bx+c|b2adxax2+bx+c+C


mx+nax2+bx+cdx={m2aln|ax2+bx+c|+2anbma4acb2arctan2ax+b4acb2+C(for 4acb2>0)m2aln|ax2+bx+c|2anbmab24acarctanh2ax+bb24ac+C(for 4acb2<0)m2aln|ax2+bx+c|2anbma(2ax+b)+C(for 4acb2=0)


1(ax2+bx+c)ndx=2ax+b(n1)(4acb2)(ax2+bx+c)n1+(2n3)2a(n1)(4acb2)1(ax2+bx+c)n1dx+C


x(ax2+bx+c)ndx=bx+2c(n1)(4acb2)(ax2+bx+c)n1b(2n3)(n1)(4acb2)1(ax2+bx+c)n1dx+C


1x(ax2+bx+c)dx=12cln|x2ax2+bx+c|b2c1ax2+bx+cdx+C

Integrands of the form xm (a + b xn)p

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
xm(a+bxn)pdx=xm+1(a+bxn)pm+np+1+anpm+np+1xm(a+bxn)p1dx
xm(a+bxn)pdx=xm+1(a+bxn)p+1an(p+1)+m+n(p+1)+1an(p+1)xm(a+bxn)p+1dx
xm(a+bxn)pdx=xm+1(a+bxn)pm+1bnpm+1xm+n(a+bxn)p1dx
xm(a+bxn)pdx=xmn+1(a+bxn)p+1bn(p+1)mn+1bn(p+1)xmn(a+bxn)p+1dx
xm(a+bxn)pdx=xmn+1(a+bxn)p+1b(m+np+1)a(mn+1)b(m+np+1)xmn(a+bxn)pdx
xm(a+bxn)pdx=xm+1(a+bxn)p+1a(m+1)b(m+n(p+1)+1)a(m+1)xm+n(a+bxn)pdx

Integrands of the form (A + B x) (a + b x)m (c + d x)n (e + f x)p

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m, n and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form (a+bx)m(c+dx)n(e+fx)p by setting B to 0.
(A+Bx)(a+bx)m(c+dx)n(e+fx)pdx=(AbaB)(a+bx)m+1(c+dx)n(e+fx)p+1b(m+1)(afbe)+1b(m+1)(afbe)
(bc(m+1)(AfBe)+(AbaB)(nde+cf(p+1))+d(b(m+1)(AfBe)+f(n+p+1)(AbaB))x)(a+bx)m+1(c+dx)n1(e+fx)pdx
(A+Bx)(a+bx)m(c+dx)n(e+fx)pdx=B(a+bx)m(c+dx)n+1(e+fx)p+1df(m+n+p+2)+1df(m+n+p+2)
(Aadf(m+n+p+2)B(bcem+a(de(n+1)+cf(p+1)))+(Abdf(m+n+p+2)+B(adfmb(de(m+n+1)+cf(m+p+1))))x)(a+bx)m1(c+dx)n(e+fx)pdx
(A+Bx)(a+bx)m(c+dx)n(e+fx)pdx=(AbaB)(a+bx)m+1(c+dx)n+1(e+fx)p+1(m+1)(adbc)(afbe)+1(m+1)(adbc)(afbe)
((m+1)(A(adfb(cf+de))+Bbce)(AbaB)(de(n+1)+cf(p+1))df(m+n+p+3)(AbaB)x)(a+bx)m+1(c+dx)n(e+fx)pdx

Integrands of the form xm (A + B xn) (a + b xn)p (c + d xn)q

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m, p and q toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form (a+bxn)p(c+dxn)q and xm(a+bxn)p(c+dxn)q by setting m and/or B to 0.
xm(A+Bxn)(a+bxn)p(c+dxn)qdx=(AbaB)xm+1(a+bxn)p+1(c+dxn)qabn(p+1)+1abn(p+1)
xm(c(Abn(p+1)+(AbaB)(m+1))+d(Abn(p+1)+(AbaB)(m+nq+1))xn)(a+bxn)p+1(c+dxn)q1dx
xm(A+Bxn)(a+bxn)p(c+dxn)qdx=Bxm+1(a+bxn)p+1(c+dxn)qb(m+n(p+q+1)+1)+1b(m+n(p+q+1)+1)
xm(c((AbaB)(1+m)+Abn(1+p+q))+(d(AbaB)(1+m)+Bnq(bcad)+Abdn(1+p+q))xn)(a+bxn)p(c+dxn)q1dx
xm(A+Bxn)(a+bxn)p(c+dxn)qdx=(AbaB)xm+1(a+bxn)p+1(c+dxn)q+1an(bcad)(p+1)+1an(bcad)(p+1)
xm(c(AbaB)(m+1)+An(bcad)(p+1)+d(AbaB)(m+n(p+q+2)+1)xn)(a+bxn)p+1(c+dxn)qdx
xm(A+Bxn)(a+bxn)p(c+dxn)qdx=Bxmn+1(a+bxn)p+1(c+dxn)q+1bd(m+n(p+q+1)+1)1bd(m+n(p+q+1)+1)
xmn(aBc(mn+1)+(aBd(m+nq+1)b(Bc(m+np+1)+Ad(m+n(p+q+1)+1)))xn)(a+bxn)p(c+dxn)qdx
xm(A+Bxn)(a+bxn)p(c+dxn)qdx=Axm+1(a+bxn)p+1(c+dxn)q+1ac(m+1)+1ac(m+1)
xm+n(aBc(m+1)A(bc+ad)(m+n+1)An(bcp+adq)Abd(m+n(p+q+2)+1)xn)(a+bxn)p(c+dxn)qdx
xm(A+Bxn)(a+bxn)p(c+dxn)qdx=Axm+1(a+bxn)p+1(c+dxn)qa(m+1)1a(m+1)
xm+n(c(AbaB)(m+1)+An(bc(p+1)+adq)+d((AbaB)(m+1)+Abn(p+q+1))xn)(a+bxn)p(c+dxn)q1dx
xm(A+Bxn)(a+bxn)p(c+dxn)qdx=(AbaB)xmn+1(a+bxn)p+1(c+dxn)q+1bn(bcad)(p+1)1bn(bcad)(p+1)
xmn(c(AbaB)(mn+1)+(d(AbaB)(m+nq+1)bn(BcAd)(p+1))xn)(a+bxn)p+1(c+dxn)qdx

Integrands of the form (d + e x)m (a + b x + c x2)p when b2 − 4 a c = 0

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form (a+bx+cx2)p when b24ac=0 by setting m to 0.
(d+ex)m(a+bx+cx2)pdx=(d+ex)m+1(a+bx+cx2)pe(m+1)p(d+ex)m+2(b+2cx)(a+bx+cx2)p1e2(m+1)(m+2p+1)+p(2p1)(2cdbe)e2(m+1)(m+2p+1)(d+ex)m+1(a+bx+cx2)p1dx
(d+ex)m(a+bx+cx2)pdx=(d+ex)m+1(a+bx+cx2)pe(m+1)p(d+ex)m+2(b+2cx)(a+bx+cx2)p1e2(m+1)(m+2)+2cp(2p1)e2(m+1)(m+2)(d+ex)m+2(a+bx+cx2)p1dx
(d+ex)m(a+bx+cx2)pdx=e(m+2p+2)(d+ex)m(a+bx+cx2)p+1(p+1)(2p+1)(2cdbe)+(d+ex)m+1(b+2cx)(a+bx+cx2)p(2p+1)(2cdbe)+e2m(m+2p+2)(p+1)(2p+1)(2cdbe)(d+ex)m1(a+bx+cx2)p+1dx
(d+ex)m(a+bx+cx2)pdx=em(d+ex)m1(a+bx+cx2)p+12c(p+1)(2p+1)+(d+ex)m(b+2cx)(a+bx+cx2)p2c(2p+1)+e2m(m1)2c(p+1)(2p+1)(d+ex)m2(a+bx+cx2)p+1dx
(d+ex)m(a+bx+cx2)pdx=(d+ex)m+1(a+bx+cx2)pe(m+2p+1)p(2cdbe)(d+ex)m+1(b+2cx)(a+bx+cx2)p12ce2(m+2p)(m+2p+1)+p(2p1)(2cdbe)22ce2(m+2p)(m+2p+1)(d+ex)m(a+bx+cx2)p1dx
(d+ex)m(a+bx+cx2)pdx=2ce(m+2p+2)(d+ex)m+1(a+bx+cx2)p+1(p+1)(2p+1)(2cdbe)2+(d+ex)m+1(b+2cx)(a+bx+cx2)p(2p+1)(2cdbe)+2ce2(m+2p+2)(m+2p+3)(p+1)(2p+1)(2cdbe)2(d+ex)m(a+bx+cx2)p+1dx
(d+ex)m(a+bx+cx2)pdx=(d+ex)m(b+2cx)(a+bx+cx2)p2c(m+2p+1)+m(2cdbe)2c(m+2p+1)(d+ex)m1(a+bx+cx2)pdx
(d+ex)m(a+bx+cx2)pdx=(d+ex)m+1(b+2cx)(a+bx+cx2)p(m+1)(2cdbe)+2c(m+2p+2)(m+1)(2cdbe)(d+ex)m+1(a+bx+cx2)pdx

Integrands of the form (d + e x)m (A + B x) (a + b x + c x2)p

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form (a+bx+cx2)p and (d+ex)m(a+bx+cx2)p by setting m and/or B to 0.
(d+ex)m(A+Bx)(a+bx+cx2)pdx=(d+ex)m+1(Ae(m+2p+2)Bd(2p+1)+eB(m+1)x)(a+bx+cx2)pe2(m+1)(m+2p+2)+1e2(m+1)(m+2p+2)p
(d+ex)m+1(B(bd+2ae+2aem+2bdp)Abe(m+2p+2)+(B(2cd+be+bem+4cdp)2Ace(m+2p+2))x)(a+bx+cx2)p1dx
(d+ex)m(A+Bx)(a+bx+cx2)pdx=(d+ex)m(Ab2aB(bB2Ac)x)(a+bx+cx2)p+1(p+1)(b24ac)+1(p+1)(b24ac)
(d+ex)m1(B(2aem+bd(2p+3))A(bem+2cd(2p+3))+e(bB2Ac)(m+2p+3)x)(a+bx+cx2)p+1dx
(d+ex)m(A+Bx)(a+bx+cx2)pdx=(d+ex)m+1(Ace(m+2p+2)B(cd+2cdpbep)+Bce(m+2p+1)x)(a+bx+cx2)pce2(m+2p+1)(m+2p+2)pce2(m+2p+1)(m+2p+2)
(d+ex)m(Ace(bd2ae)(m+2p+2)+B(ae(be2cdm+bem)+bd(bepcd2cdp))+
(Ace(2cdbe)(m+2p+2)B(b2e2(m+p+1)+2c2d2(1+2p)+ce(bd(m2p)+2ae(m+2p+1))))x)(a+bx+cx2)p1dx
(d+ex)m(A+Bx)(a+bx+cx2)pdx=(d+ex)m+1(A(bcdb2e+2ace)aB(2cdbe)+c(A(2cdbe)B(bd2ae))x)(a+bx+cx2)p+1(p+1)(b24ac)(cd2bde+ae2)+
1(p+1)(b24ac)(cd2bde+ae2)
(d+ex)m(A(bcde(2pm+2)+b2e2(m+p+2)2c2d2(3+2p)2ace2(m+2p+3))
B(ae(be2cdm+bem)+bd(3cd+be2cdp+bep))+ce(B(bd2ae)A(2cdbe))(m+2p+4)x)(a+bx+cx2)p+1dx
(d+ex)m(A+Bx)(a+bx+cx2)pdx=B(d+ex)m(a+bx+cx2)p+1c(m+2p+2)+1c(m+2p+2)
(d+ex)m1(m(AcdaBe)d(bB2Ac)(p+1)+((BcdbBe+Ace)me(bB2Ac)(p+1))x)(a+bx+cx2)pdx
(d+ex)m(A+Bx)(a+bx+cx2)pdx=(BdAe)(d+ex)m+1(a+bx+cx2)p+1(m+1)(cd2bde+ae2)+1(m+1)(cd2bde+ae2)
(d+ex)m+1((AcdAbe+aBe)(m+1)+b(BdAe)(p+1)+c(BdAe)(m+2p+3)x)(a+bx+cx2)pdx

Integrands of the form xm (a + b xn + c x2n)p when b2 − 4 a c = 0

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form (a+bxn+cx2n)p when b24ac=0 by setting m to 0.
xm(a+bxn+cx2n)pdx=xm+1(a+bxn+cx2n)pm+2np+1+npxm+1(2a+bxn)(a+bxn+cx2n)p1(m+1)(m+2np+1)bn2p(2p1)(m+1)(m+2np+1)xm+n(a+bxn+cx2n)p1dx
xm(a+bxn+cx2n)pdx=(m+n(2p1)+1)xm+1(a+bxn+cx2n)p(m+1)(m+n+1)+npxm+1(2a+bxn)(a+bxn+cx2n)p1(m+1)(m+n+1)+2cpn2(2p1)(m+1)(m+n+1)xm+2n(a+bxn+cx2n)p1dx
xm(a+bxn+cx2n)pdx=(m+n(2p+1)+1)xmn+1(a+bxn+cx2n)p+1bn2(p+1)(2p+1)xm+1(b+2cxn)(a+bxn+cx2n)pbn(2p+1)(mn+1)(m+n(2p+1)+1)bn2(p+1)(2p+1)xmn(a+bxn+cx2n)p+1dx
xm(a+bxn+cx2n)pdx=(m3n2np+1)xm2n+1(a+bxn+cx2n)p+12cn2(p+1)(2p+1)xm2n+1(2a+bxn)(a+bxn+cx2n)p2cn(2p+1)+(mn+1)(m2n+1)2cn2(p+1)(2p+1)xm2n(a+bxn+cx2n)p+1dx
xm(a+bxn+cx2n)pdx=xm+1(a+bxn+cx2n)pm+2np+1+npxm+1(2a+bxn)(a+bxn+cx2n)p1(m+2np+1)(m+n(2p1)+1)+2an2p(2p1)(m+2np+1)(m+n(2p1)+1)xm(a+bxn+cx2n)p1dx
xm(a+bxn+cx2n)pdx=(m+n+2np+1)xm+1(a+bxn+cx2n)p+12an2(p+1)(2p+1)xm+1(2a+bxn)(a+bxn+cx2n)p2an(2p+1)+(m+n(2p+1)+1)(m+2n(p+1)+1)2an2(p+1)(2p+1)xm(a+bxn+cx2n)p+1dx
xm(a+bxn+cx2n)pdx=xmn+1(b+2cxn)(a+bxn+cx2n)p2c(m+2np+1)b(mn+1)2c(m+2np+1)xmn(a+bxn+cx2n)pdx
xm(a+bxn+cx2n)pdx=xm+1(b+2cxn)(a+bxn+cx2n)pb(m+1)2c(m+n(2p+1)+1)b(m+1)xm+n(a+bxn+cx2n)pdx

Integrands of the form xm (A + B xn) (a + b xn + c x2n)p

  • The resulting integrands are of the same form as the original integrand, so these reduction formulas can be repeatedly applied to drive the exponents m and p toward 0.
  • These reduction formulas can be used for integrands having integer and/or fractional exponents.
  • Special cases of these reductions formulas can be used for integrands of the form (a+bxn+cx2n)p and xm(a+bxn+cx2n)p by setting m and/or B to 0.
xm(A+Bxn)(a+bxn+cx2n)pdx=xm+1(A(m+n(2p+1)+1)+B(m+1)xn)(a+bxn+cx2n)p(m+1)(m+n(2p+1)+1)+np(m+1)(m+n(2p+1)+1)
xm+n(2aB(m+1)Ab(m+n(2p+1)+1)+(bB(m+1)2Ac(m+n(2p+1)+1))xn)(a+bxn+cx2n)p1dx
xm(A+Bxn)(a+bxn+cx2n)pdx=xmn+1(Ab2aB(bB2Ac)xn)(a+bxn+cx2n)p+1n(p+1)(b24ac)+1n(p+1)(b24ac)
xmn((mn+1)(2aBAb)+(m+2n(p+1)+1)(bB2Ac)xn)(a+bxn+cx2n)p+1dx
xm(A+Bxn)(a+bxn+cx2n)pdx=xm+1(bBnp+Ac(m+n(2p+1)+1)+Bc(m+2np+1)xn)(a+bxn+cx2n)pc(m+2np+1)(m+n(2p+1)+1)+npc(m+2np+1)(m+n(2p+1)+1)
xm(2aAc(m+n(2p+1)+1)abB(m+1)+(2aBc(m+2np+1)+Abc(m+n(2p+1)+1)b2B(m+np+1))xn)(a+bxn+cx2n)p1dx
xm(A+Bxn)(a+bxn+cx2n)pdx=xm+1(Ab2abB2aAc+(Ab2aB)cxn)(a+bxn+cx2n)p+1an(p+1)(b24ac)+1an(p+1)(b24ac)
xm((m+n(p+1)+1)Ab2abB(m+1)2(m+2n(p+1)+1)aAc+(m+n(2p+3)+1)(Ab2aB)cxn)(a+bxn+cx2n)p+1dx
xm(A+Bxn)(a+bxn+cx2n)pdx=Bxmn+1(a+bxn+cx2n)p+1c(m+n(2p+1)+1)1c(m+n(2p+1)+1)
xmn(aB(mn+1)+(bB(m+np+1)Ac(m+n(2p+1)+1))xn)(a+bxn+cx2n)pdx
xm(A+Bxn)(a+bxn+cx2n)pdx=Axm+1(a+bxn+cx2n)p+1a(m+1)+1a(m+1)
xm+n(aB(m+1)Ab(m+n(p+1)+1)Ac(m+2n(p+1)+1)xn)(a+bxn+cx2n)pdx

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

Template:Lists of integrals

  1. "Reader Survey: log|x| + C", Tom Leinster, The n-category Café, March 19, 2012