|
|
Line 1: |
Line 1: |
| {{Redirect|Sinh|the garment|sinh (clothing)}}
| | In [[physics]] and [[chemistry]], the '''Faraday constant''' (named after [[Michael Faraday]]) is the magnitude of [[electric charge]] per [[mole (unit)|mole]] of [[electron]]s.<ref>The term "magnitude" is used in the sense of "[[absolute value]]": The charge of an electron is negative, but ''F'' is always defined to be positive.</ref> It has the currently accepted [[value]] |
| [[Image:Hyperbolic functions-2.svg|thumb|296px|right|A ray through the origin intercepts the [[unit hyperbola]] <math>\scriptstyle x^2\ -\ y^2\ =\ 1</math> in the point <math>\scriptstyle (\cosh\,a,\,\sinh\,a)</math>, where <math>\scriptstyle a</math> is twice the area between the ray, the hyperbola, and the <math>\scriptstyle x</math>-axis. For points on the hyperbola below the <math>\scriptstyle x</math>-axis, the area is considered negative (see [[:Image:HyperbolicAnimation.gif|animated version]] with comparison with the trigonometric (circular) functions).]] | | :{{physconst|F|symbol=yes|after=.}} |
|
| |
|
| In [[mathematics]], '''hyperbolic functions''' are analogs of the ordinary [[trigonometric function|trigonometric]], or circular, functions. The basic hyperbolic functions are the '''hyperbolic sine''' "sinh" ({{IPAc-en|ˈ|s|ɪ|n|tʃ}} or {{IPAc-en|ˈ|ʃ|aɪ|n}}),<ref>(1999) ''Collins Concise Dictionary'', 4th edition, HarperCollins, Glasgow, ISBN 0 00 472257 4, p.1386</ref> and the '''hyperbolic cosine''' "cosh" ({{IPAc-en|ˈ|k|ɒ|ʃ}}),<ref>''Collins Concise Dictionary'', p.328</ref> from which are derived the '''hyperbolic tangent''' "tanh" ({{IPAc-en|ˈ|t|æ|n|tʃ}} or {{IPAc-en|ˈ|θ|æ|n}}),<ref>''Collins Concise Dictionary'', p.1520</ref> '''hyperbolic cosecant''' "csch" or "cosech" ({{IPAc-en|ˈ|k|oʊ|ʃ|ɛ|k}}<ref>''Collins Concise Dictionary'', p.328</ref> or {{IPAc-en|ˈ|k|oʊ|s|ɛ|tʃ}}), '''hyperbolic secant''' "sech" ({{IPAc-en|ˈ|ʃ|ɛ|k}} or {{IPAc-en|ˈ|s|ɛ|tʃ}}),<ref>''Collins Concise Dictionary'', p.1340</ref> and '''hyperbolic cotangent''' "coth" ({{IPAc-en|ˈ|k|oʊ|θ}} or {{IPAc-en|ˈ|k|ɒ|θ}}),<ref>''Collins Concise Dictionary'', p.329</ref><ref>[http://www.mathcentre.ac.uk/resources/workbooks/mathcentre/hyperbolicfunctions.pdf tanh]</ref> corresponding to the derived trigonometric functions. The [[inverse hyperbolic function]]s are the '''area hyperbolic sine''' "arsinh" (also called "asinh" or sometimes "arcsinh")<ref>[http://www.google.com/books?q=arcsinh+-library Some examples of using '''arcsinh'''] found in [[Google Books]].</ref> and so on.
| | The constant ''F'' has a simple relation to two other physical constants: |
| | :<math>F\,=\,eN_{A}</math> |
| | where: |
| | :{{physconst|e|symbol=yes|round=auto|after=;}} |
| | :{{physconst|NA|symbol=yes|round=auto|after=.}} |
| | ''N''<sub>A</sub> is the [[Avogadro constant]] (the ratio of the number of particles 'N' to the amount of substance 'n' - a unit mole), and ''e'' is the [[elementary charge]] or the magnitude of the [[electric charge|charge]] of an [[electron]]. This relation is true because the amount of charge of a mole of electrons is equal to the amount of charge in ''one'' electron multiplied by the number of electrons in a mole. |
|
| |
|
| Just as the points (cos ''t'', sin ''t'') form a circle with a unit radius, the points (cosh ''t'', sinh ''t'') form the right half of the equilateral [[hyperbola]]. The hyperbolic functions take a [[Real number|real argument]] called a [[hyperbolic angle]]. The size of a hyperbolic angle is the area of its [[hyperbolic sector]]. The hyperbolic functions may be defined in terms of the [[hyperbolic sector#Hyperbolic triangle|legs of a right triangle]] covering this sector.
| | The value of ''F'' was first determined by weighing the amount of [[silver]] deposited in an electrochemical reaction in which a measured [[Current (electricity)|current]] was passed for a measured time, and using [[Faraday's law of electrolysis]].<ref>[http://physics.nist.gov/cuu/Constants/historical1.html NIST Introduction to physical constants]</ref> Research is continuing into more accurate ways of determining the interrelated constants ''F'', ''N''<sub>A</sub>, and ''e''. |
|
| |
|
| Hyperbolic functions occur in the solutions of some important linear [[differential equation]]s, for example the equation defining a [[catenary]], of some [[Cubic function#Trigonometric (and hyperbolic) method|cubic equations]], and of [[Laplace's equation]] in [[Cartesian coordinates]]. The latter is important in many areas of [[physics]], including [[electromagnetic theory]], [[heat transfer]], [[fluid dynamics]], and [[special relativity]].
| | ==Other Common Units of Faraday's Constant== |
| | * 96,485 J (96.485 kJ) per volt gram equivalent |
| | * 23.061 kcal per volt gram equivalent |
| | * 26.801 A·h/mol |
|
| |
|
| In [[complex analysis]], the hyperbolic functions arise as the imaginary parts of sine and cosine. When considered defined by a complex variable, the hyperbolic functions are [[rational function]]s of [[exponential function|exponentials]], and are hence [[meromorphic function|meromorphic]].
| | ==Faraday unit of charge== |
|
| |
|
| Hyperbolic functions were introduced in the 1760s independently by [[Vincenzo Riccati]] and [[Johann Heinrich Lambert]].<ref>Robert E. Bradley, Lawrence A. D'Antonio, Charles Edward Sandifer. ''Euler at 300: an appreciation.'' Mathematical Association of America, 2007. Page 100.</ref> Riccati used ''Sc.'' and ''Cc.'' (''[co]sinus circulare'') to refer to circular functions and ''Sh.'' and ''Ch.'' (''[co]sinus hyperbolico'') to refer to hyperbolic functions. Lambert adopted the names but altered the abbreviations to what they are today.<ref>Georg F. Becker. ''Hyperbolic functions.'' Read Books, 1931. Page xlviii.</ref> The abbreviations ''sh'' and ''ch'' are still used in some other languages, like French and Russian.
| | Related to Faraday's constant is the "faraday", a unit of [[electrical charge]]. It is much less common than the [[coulomb]], but sometimes used in electrochemistry.<ref>[http://books.google.com/books?id=r-Qpy0KQayIC&pg=PA51 ''Foundations Of Physics, Volume 2'', by R. S. Gambhir, p51]</ref> One Faraday of charge is the magnitude of the charge of one mole of electrons, i.e. {{physconst|F|unit=no|after= [[coulomb|C]].}} |
|
| |
|
| ==Standard algebraic expressions==
| | Expressed in faradays, the Faraday constant F equals "1 faraday of charge per mole". |
| [[Image:sinh cosh tanh.svg|256px|thumb|<span style="color:#b30000;">sinh</span>, <span style="color:#00b300;">cosh</span> and <span style="color:#0000b3;">tanh</span>]]
| |
| [[Image:csch sech coth.svg|256px|thumb|<span style="color:#b30000;">csch</span>, <span style="color:#00b300;">sech</span> and <span style="color:#0000b3;">coth</span>]]
| |
| {{multiple image
| |
| | direction = vertical
| |
| | width = 225
| |
| | footer = Hyperbolic functions (a) cosh and (b) sinh obtained using exponential functions <math>e^x</math> and <math>e^{-x}</math>
| |
| | image1 = Hyperbolic and exponential; cosh.svg
| |
| | caption1 = (a) cosh(''x'') is the [[Arithmetic mean|average]] of ''e<sup>x</sup>''and ''e<sup>−x</sup>''
| |
| | alt1 = (a) cosh(''x'') is the [[Arithmetic mean|average]] of ''e<sup>x</sup>''and ''e<sup>−x</sup>''
| |
| | image2 = Hyperbolic and exponential; sinh.svg
| |
| | caption2 = (b) sinh(''x'') is half the [[Subtraction|difference]] of ''e<sup>x</sup>'' and ''e<sup>−x</sup>''
| |
| | alt2 = (b) sinh(''x'') is half the [[Subtraction|difference]] of ''e<sup>x</sup>'' and ''e<sup>−x</sup>''
| |
| }}
| |
| The hyperbolic functions are:
| |
|
| |
|
| * Hyperbolic sine:
| | This faraday unit is not to be confused with the [[farad]], an unrelated unit of [[capacitance]]. |
| ::<math>\sinh x = \frac {e^x - e^{-x}} {2} = \frac {e^{2x} - 1} {2e^x} = \frac {1 - e^{-2x}} {2e^{-x}}</math>
| |
|
| |
|
| * Hyperbolic cosine:
| | ==See also== |
| ::<math>\cosh x = \frac {e^x + e^{-x}} {2} = \frac {e^{2x} + 1} {2e^x} = \frac {1 + e^{-2x}} {2e^{-x}}</math>
| | * [[Farad]], unit of capacitance |
| | * [[Michael Faraday]] |
| | * [[Faraday cage]] |
| | * [[Faraday efficiency]] |
| | * [[Faraday's law of electrolysis]] |
| | * Faraday's law of [[Electromagnetic induction]] |
|
| |
|
| * Hyperbolic tangent:
| | ==References== |
| ::<math>\tanh x = \frac{\sinh x}{\cosh x} = \frac {e^x - e^{-x}} {e^x + e^{-x}} = \frac{e^{2x} - 1} {e^{2x} + 1} = \frac{1 - e^{-2x}} {1 + e^{-2x}}</math>
| | {{reflist}} |
| | |
| * Hyperbolic cotangent:
| |
| ::<math>\coth x = \frac{\cosh x}{\sinh x} = \frac {e^x + e^{-x}} {e^x - e^{-x}} = \frac{e^{2x} + 1} {e^{2x} - 1} = \frac{1 + e^{-2x}} {1 - e^{-2x}}</math>
| |
| | |
| * Hyperbolic secant:
| |
| ::<math>\operatorname{sech}\,x = \left(\cosh x\right)^{-1} = \frac {2} {e^x + e^{-x}} = \frac{2e^x} {e^{2x} + 1} = \frac{2e^{-x}} {1 + e^{-2x}}</math>
| |
| | |
| * Hyperbolic cosecant:
| |
| ::<math>\operatorname{csch}\,x = \left(\sinh x\right)^{-1} = \frac {2} {e^x - e^{-x}} = \frac{2e^x} {e^{2x} - 1} = \frac{2e^{-x}} {1 - e^{-2x}}</math>
| |
| | |
| Hyperbolic functions can be introduced via [[hyperbolic angle#Imaginary circular angle|imaginary circular angles]]:
| |
| | |
| * Hyperbolic sine:
| |
| ::<math>\sinh x = -i \sin (i x)</math>
| |
| | |
| * Hyperbolic cosine:
| |
| ::<math>\cosh x = \cos (i x)</math>
| |
| | |
| * Hyperbolic tangent:
| |
| ::<math>\tanh x = -i \tan (i x)</math>
| |
| | |
| * Hyperbolic cotangent:
| |
| ::<math>\coth x = i \cot (i x)</math>
| |
| | |
| * Hyperbolic secant:
| |
| ::<math>\operatorname{sech} x = \sec (i x)</math>
| |
| | |
| * Hyperbolic cosecant:
| |
| ::<math>\operatorname{csch} x = i \csc (i x)</math>
| |
| | |
| where ''i'' is the [[imaginary unit]] defined by ''i''<sup>2</sup> = −1.
| |
| | |
| The [[complex number|complex]] forms in the definitions above derive from [[Euler's formula]].
| |
| | |
| ==Useful relations==
| |
| Odd and even functions:
| |
| :<math>\begin{align}
| |
| \sinh (-x) &= -\sinh x \\
| |
| \cosh (-x) &= \cosh x
| |
| \end{align}</math>
| |
| | |
| Hence:
| |
| :<math>\begin{align}
| |
| \tanh (-x) &= -\tanh x \\
| |
| \coth (-x) &= -\coth x \\
| |
| \operatorname{sech} (-x) &= \operatorname{sech} x \\
| |
| \operatorname{csch} (-x) &= -\operatorname{csch} x
| |
| \end{align}</math>
| |
| | |
| It can be seen that cosh ''x'' and sech ''x'' are [[even function]]s; the others are [[odd functions]].
| |
| | |
| :<math>\begin{align}
| |
| \operatorname{arsech} x &= \operatorname{arcosh} \frac{1}{x} \\
| |
| \operatorname{arcsch} x &= \operatorname{arsinh} \frac{1}{x} \\
| |
| \operatorname{arcoth} x &= \operatorname{artanh} \frac{1}{x}
| |
| \end{align}</math>
| |
| | |
| Hyperbolic sine and cosine satisfy the identity
| |
| :<math>\cosh^2 x - \sinh^2 x = 1 </math>
| |
| | |
| which is similar to the [[Pythagorean trigonometric identity]]. One also has
| |
| :<math>\begin{align}
| |
| \operatorname{sech} ^{2} x &= 1 - \tanh^{2} x \\
| |
| \operatorname{csch} ^{2} x &= \coth^{2} x - 1
| |
| \end{align}</math>
| |
| | |
| for the other functions.
| |
| | |
| The hyperbolic tangent is the solution to the [[differential equation]] <math>f'=1-f^2</math> with f(0)=0 and the [[nonlinear]] [[boundary value problem]]:<ref>
| |
| {{cite web
| |
| | url = http://mathworld.wolfram.com/HyperbolicTangent.html
| |
| | title = Hyperbolic Tangent
| |
| | author = [[Eric W. Weisstein]]
| |
| | publisher = [[MathWorld]]
| |
| | date =
| |
| | accessdate = 2008-10-20
| |
| }}</ref>
| |
| | |
| :<math>\frac{1}{2} f'' = f^3 - f ; \quad f(0) = f'(\infty) = 0</math>
| |
| | |
| It can be shown that the area under the curve of cosh (''x'') over a finite interval is always equal to the arc length corresponding to that interval:<ref>
| |
| {{cite book
| |
| |title=Golden Integral Calculus
| |
| |first1=Bali
| |
| |last1=N.P.
| |
| |publisher=Firewall Media
| |
| |year=2005
| |
| |isbn=81-7008-169-6
| |
| |page=472
| |
| |url=http://books.google.com/books?id=hfi2bn2Ly4cC}}, [http://books.google.com/books?id=hfi2bn2Ly4cC&pg=PA472 Extract of page 472]
| |
| </ref>
| |
| :<math>\text{area} = \int_a^b{ \cosh{(x)} } \ dx = \int_a^b\sqrt{1 + \left(\frac{d}{dx} \cosh{(x)}\right)^2} \ dx = \text{arc length}</math>
| |
| | |
| Sums of arguments:
| |
| :<math>\begin{align}
| |
| \sinh(x + y) &= \sinh (x) \cosh (y) + \cosh (x) \sinh (y) \\
| |
| \cosh(x + y) &= \cosh (x) \cosh (y) + \sinh (x) \sinh (y) \\
| |
| | |
| \end{align}</math>
| |
| particularly
| |
| :<math>\begin{align}
| |
| \cosh (2x) &= \sinh^2{x} + \cosh^2{x} = 2\sinh^2 x + 1 = 2\cosh^2 x - 1\\
| |
| \sinh (2x) &= 2\sinh x \cosh x
| |
| \end{align}</math>
| |
| | |
| Sum and difference of cosh and sinh:
| |
| :<math>\begin{align}
| |
| \cosh x + \sinh x &= e^x \\
| |
| \cosh x - \sinh x &= e^{-x}
| |
| \end{align}</math>
| |
| | |
| ==Inverse functions as logarithms==
| |
| :<math>\begin{align}
| |
| \operatorname {arsinh} (x) &= \ln \left(x + \sqrt{x^{2} + 1} \right) \\
| |
| | |
| \operatorname {arcosh} (x) &= \ln \left(x + \sqrt{x^{2} - 1} \right); x \ge 1 \\
| |
| | |
| \operatorname {artanh} (x) &= \frac{1}{2}\ln \left( \frac{1 + x}{1 - x} \right); \left| x \right| < 1 \\
| |
| | |
| \operatorname {arcoth} (x) &= \frac{1}{2}\ln \left( \frac{x + 1}{x - 1} \right); \left| x \right| > 1 \\
| |
| | |
| \operatorname {arsech} (x) &= \ln \left( \frac{1}{x} + \frac{\sqrt{1 - x^{2}}}{x} \right); 0 < x \le 1 \\
| |
| | |
| \operatorname {arcsch} (x) &= \ln \left( \frac{1}{x} + \frac{\sqrt{1 + x^{2}}}{\left| x \right|} \right); x \ne 0
| |
| \end{align}</math>
| |
| | |
| ==Derivatives==
| |
| :<math> \frac{d}{dx}\sinh x = \cosh x \,</math>
| |
| | |
| :<math> \frac{d}{dx}\cosh x = \sinh x \,</math>
| |
| | |
| :<math> \frac{d}{dx}\tanh x = 1 - \tanh^2 x = \operatorname{sech}^2 x = 1/\cosh^2 x \,</math> <!-- from: http://www.pen.k12.va.us/Div/Winchester/jhhs/math/lessons/calculus/tableof.html and http://thesaurus.maths.org/mmkb/entry.html?action=entryById&id=2664 -->
| |
| | |
| :<math> \frac{d}{dx}\coth x = 1 - \coth^2 x = -\operatorname{csch}^2 x = -1/\sinh^2 x \,</math>
| |
| | |
| :<math> \frac{d}{dx}\ \operatorname{sech}\,x = - \tanh x \ \operatorname{sech}\,x \,</math>
| |
| | |
| :<math> \frac{d}{dx}\ \operatorname{csch}\,x = - \coth x \ \operatorname{csch}\,x \,</math>
| |
| | |
| :<math>\frac{d}{dx}\, \operatorname{arsinh}\,x =\frac{1}{\sqrt{x^{2}+1}}</math>
| |
| | |
| :<math>\frac{d}{dx}\, \operatorname{arcosh}\,x =\frac{1}{\sqrt{x^{2}-1}}</math>
| |
| | |
| :<math>\frac{d}{dx}\, \operatorname{artanh}\,x =\frac{1}{1-x^{2}}</math>
| |
| | |
| :<math>\frac{d}{dx}\, \operatorname{arcoth}\,x =\frac{1}{1-x^{2}}</math>
| |
| | |
| :<math>\frac{d}{dx}\, \operatorname{arsech}\,x =-\frac{1}{x\sqrt{1-x^{2}}}</math>
| |
| | |
| :<math>\frac{d}{dx}\, \operatorname{arcsch}\,x =-\frac{1}{\left| x \right|\sqrt{1+x^{2}}}</math>
| |
| | |
| ==Standard integrals==
| |
| {{For|a full list|list of integrals of hyperbolic functions}}
| |
| | |
| <math>\begin{align}
| |
| \int \sinh (ax)\,dx &= a^{-1} \cosh (ax) + C \\
| |
| \int \cosh (ax)\,dx &= a^{-1} \sinh (ax) + C \\
| |
| \int \tanh (ax)\,dx &= a^{-1} \ln (\cosh (ax)) + C \\
| |
| \int \coth (ax)\,dx &= a^{-1} \ln (\sinh (ax)) + C \\
| |
| \int \operatorname{sech} (ax)\,dx &= a^{-1} \arctan (\sinh (ax)) + C \\
| |
| \int \operatorname{csch} (ax)\,dx &= a^{-1} \ln \left( \tanh \left( \frac{ax}{2} \right) \right) + C &= a^{-1} \ln\left|\operatorname{csch} (ax) - \coth (ax)\right| + C
| |
| \end{align}</math>
| |
| | |
| The following integrals can be proved using [[hyperbolic substitution]].
| |
| | |
| <math>\begin{align}
| |
| \int {\frac{du}{\sqrt{a^2 + u^2}}} & = \operatorname{arsinh} \left( \frac{u}{a} \right) + C \\
| |
| \int {\frac{du}{\sqrt{u^2 - a^2}}} &= \operatorname{arcosh} \left( \frac{u}{a} \right) + C \\
| |
| \int {\frac{du}{a^2 - u^2}} & = a^{-1}\operatorname{artanh} \left( \frac{u}{a} \right) + C; u^2 < a^2 \\
| |
| \int {\frac{du}{a^2 - u^2}} & = a^{-1}\operatorname{arcoth} \left( \frac{u}{a} \right) + C; u^2 > a^2 \\
| |
| \int {\frac{du}{u\sqrt{a^2 - u^2}}} & = -a^{-1}\operatorname{arsech}\left( \frac{u}{a} \right) + C \\
| |
| \int {\frac{du}{u\sqrt{a^2 + u^2}}} & = -a^{-1}\operatorname{arcsch}\left| \frac{u}{a} \right| + C
| |
| \end{align}</math>
| |
| | |
| where ''C'' is the [[constant of integration]].
| |
| | |
| ==Taylor series expressions==
| |
| It is possible to express the above functions as [[Taylor series]]:
| |
| | |
| :<math>\sinh x = x + \frac {x^3} {3!} + \frac {x^5} {5!} + \frac {x^7} {7!} +\cdots = \sum_{n=0}^\infty \frac{x^{2n+1}}{(2n+1)!}</math>
| |
| The function sinh ''x'' has a Taylor series expression with only odd exponents for ''x''. Thus it is an [[odd function]], that is, −sinh ''x'' = sinh(−''x''), and sinh 0 = 0.
| |
| | |
| :<math>\cosh x = 1 + \frac {x^2} {2!} + \frac {x^4} {4!} + \frac {x^6} {6!} + \cdots = \sum_{n=0}^\infty \frac{x^{2n}}{(2n)!}</math>
| |
| | |
| The function cosh ''x'' has a Taylor series expression with only even exponents for ''x''. Thus it is an [[even function]], that is, symmetric with respect to the ''y''-axis. The sum of the sinh and cosh series is the [[infinite series]] expression of the [[exponential function]].
| |
| | |
| :<math>\begin{align}
| |
| | |
| \tanh x &= x - \frac {x^3} {3} + \frac {2x^5} {15} - \frac {17x^7} {315} + \cdots = \sum_{n=1}^\infty \frac{2^{2n}(2^{2n}-1)B_{2n} x^{2n-1}}{(2n)!}, \left |x \right | < \frac {\pi} {2} \\
| |
| | |
| \coth x &= x^{-1} + \frac {x} {3} - \frac {x^3} {45} + \frac {2x^5} {945} + \cdots = x^{-1} + \sum_{n=1}^\infty \frac{2^{2n} B_{2n} x^{2n-1}} {(2n)!}, 0 < \left |x \right | < \pi \\
| |
| | |
| \operatorname {sech}\, x &= 1 - \frac {x^2} {2} + \frac {5x^4} {24} - \frac {61x^6} {720} + \cdots = \sum_{n=0}^\infty \frac{E_{2 n} x^{2n}}{(2n)!} , \left |x \right | < \frac {\pi} {2} \\
| |
|
| |
|
| \operatorname {csch}\, x &= x^{-1} - \frac {x} {6} +\frac {7x^3} {360} -\frac {31x^5} {15120} + \cdots = x^{-1} + \sum_{n=1}^\infty \frac{ 2 (1-2^{2n-1}) B_{2n} x^{2n-1}}{(2n)!} , 0 < \left |x \right | < \pi
| | <!-- Some of these cats may be redundant --> |
|
| |
|
| \end{align}</math>
| | [[Category:Electrochemistry]] |
| | [[Category:Physical constants]] |
| | [[Category:Michael Faraday]] |
| | [[Category:Units of electrical charge]] |
| | [[Category:Units of amount of substance]] |
|
| |
|
| where
| |
|
| |
| :<math>B_n \,</math> is the ''n''th [[Bernoulli number]]
| |
| :<math>E_n \,</math> is the ''n''th [[Euler number]]
| |
|
| |
| ==Comparison with circular functions==
| |
|
| |
| [[File:Circular and hyperbolic angle.svg|right|250px|thumb|Circle and hyperbola tangent at (1,1) display geometry of circular functions in terms of [[sector of a circle|circular sector]] area ''u'' and hyperbolic functions depending on [[hyperbolic sector]] area ''u''.]]
| |
| The hyperbolic functions represent an expansion of [[trigonometry]] beyond the [[circular function]]s. Both types depend on an [[argument of a function|argument]], either [[angle|circular angle]] or [[hyperbolic angle]].
| |
|
| |
| Since the [[circular sector#Area|area of a circular sector]] is <math>\frac {r^2 u} {2} ,</math> it will be equal to ''u'' when ''r'' = [[square root of 2]]. In the diagram such a circle is tangent to the hyperbola ''x y'' = 1 at (1,1). The yellow sector depicts an area and angle magnitude. Similarly, the red augmentation depicts an area and magnitude as hyperbolic angle.
| |
|
| |
| The legs of the two [[right triangle]]s with hypotenuse on the ray defining the angles are of length √2 times the circular and hyperbolic functions.
| |
|
| |
| Mellon Haskell of [[University of California, Berkeley]] described the basis of hyperbolic functions in areas of [[hyperbolic sector]]s in an 1895 article in [[Bulletin of the American Mathematical Society]] (see External links). He refers to the hyperbolic angle as an [[invariant measure]] with respect to the [[squeeze mapping]] just as circular angle is invariant under rotation.
| |
|
| |
| ==Identities==
| |
| The hyperbolic functions satisfy many identities, all of them similar in form to the [[trigonometric identity|trigonometric identities]]. In fact, '''Osborn's rule'''<ref>G. Osborn, [http://links.jstor.org/sici?sici=0025-5572(190207)2%3A2%3A34%3C189%3A1MFHF%3E2.0.CO%3B2-Z Mnemonic for hyperbolic formulae], The Mathematical Gazette, p. 189, volume 2, issue 34, July 1902</ref> states that one can convert any trigonometric identity into a hyperbolic identity by expanding it completely in terms of integral powers of sines and cosines, changing sine to sinh and cosine to cosh, and switching the sign of every term which contains a product of 2, 6, 10, 14, ... sinhs. This yields for example the addition theorems
| |
| :<math>\begin{align}
| |
| \sinh(x + y) &= \sinh (x) \cosh (y) + \cosh (x) \sinh (y) \\
| |
| \cosh(x + y) &= \cosh (x) \cosh (y) + \sinh (x) \sinh (y) \\
| |
| \tanh(x + y) &= \frac{\tanh (x) + \tanh (y)}{1 + \tanh (x) \tanh (y)}
| |
| \end{align}</math>
| |
|
| |
| the "double argument formulas"
| |
| :<math>\begin{align}
| |
| \sinh 2x &= 2\sinh x \cosh x \\
| |
| \cosh 2x &= \cosh^2 x + \sinh^2 x = 2\cosh^2 x - 1 = 2\sinh^2 x + 1 \\
| |
| \tanh 2x &= \frac{2\tanh x}{1 + \tanh^2 x}\\
| |
| \sinh 2x &= \frac{2\tanh x}{1-\tanh^2 x}\\
| |
| \cosh 2x &= \frac{1+ \tanh^2 x}{1-\tanh^2 x}
| |
| \end{align}</math>
| |
|
| |
| and the "half-argument formulas"<ref>
| |
| {{cite book
| |
| |title=Technical mathematics with calculus
| |
| |edition=3rd
| |
| |first1=John Charles
| |
| |last1=Peterson
| |
| |publisher=Cengage Learning
| |
| |year=2003
| |
| |isbn=0-7668-6189-9
| |
| |page=1155
| |
| |url=http://books.google.com/books?id=PGuSDjHvircC}}, [http://books.google.com/books?id=PGuSDjHvircC&pg=PA1155 Chapter 26, page 1155]
| |
| </ref>
| |
| :<math>\sinh \frac{x}{2} = \sqrt{ \frac{1}{2}(\cosh x - 1)} \,</math> Note: This is equivalent to its circular counterpart multiplied by −1.
| |
| :<math>\cosh \frac{x}{2} = \sqrt{ \frac{1}{2}(\cosh x + 1)} \,</math> Note: This corresponds to its circular counterpart.
| |
| :<math> \tanh \frac{x}{2} = \sqrt \frac{\cosh x - 1}{\cosh x + 1} = \frac{\sinh x}{\cosh x + 1} = \frac{\cosh x - 1}{\sinh x} = \coth x - \operatorname{csch}x.</math>
| |
| :<math> \coth \frac{x}{2} = \coth x + \operatorname{csch}x.</math>
| |
|
| |
| The [[derivative]] of sinh ''x'' is cosh ''x'' and the derivative of cosh ''x'' is sinh ''x''; this is similar to trigonometric functions, albeit the sign is different (i.e., the derivative of cos ''x'' is −sin ''x'').
| |
|
| |
| The [[Gudermannian function]] gives a direct relationship between the circular functions and the hyperbolic ones that does not involve complex numbers.
| |
|
| |
| The graph of the function ''a'' cosh(''x''/''a'') is the [[catenary]], the curve formed by a uniform flexible chain hanging freely between two fixed points under uniform gravity.
| |
|
| |
| ==Relationship to the exponential function==
| |
| From the definitions of the hyperbolic sine and cosine, we can derive the following identities:
| |
|
| |
| :<math>e^x = \cosh x + \sinh x</math>
| |
|
| |
| and
| |
|
| |
| :<math>e^{-x} = \cosh x - \sinh x</math>
| |
|
| |
| These expressions are analogous to the expressions for sine and cosine, based on [[Euler's formula]], as sums of complex exponentials.
| |
|
| |
| ==Hyperbolic functions for complex numbers==
| |
| Since the [[exponential function]] can be defined for any [[complex number|complex]] argument, we can extend the definitions of the hyperbolic functions also to complex arguments. The functions sinh ''z'' and cosh ''z'' are then [[Holomorphic function|holomorphic]].
| |
|
| |
| Relationships to ordinary trigonometric functions are given by [[Euler's formula]] for complex numbers:
| |
|
| |
| :<math>\begin{align}
| |
| e^{i x} &= \cos x + i \;\sin x \\
| |
| e^{-i x} &= \cos x - i \;\sin x
| |
| \end{align}</math>
| |
|
| |
| so:
| |
|
| |
| :<math>\begin{align}
| |
| \cosh ix &= \frac{1}{2} \left(e^{i x} + e^{-i x}\right) = \cos x \\
| |
| \sinh ix &= \frac{1}{2} \left(e^{i x} - e^{-i x}\right) = i \sin x \\
| |
| \cosh(x+iy) &= \cosh(x) \cos(y) + i \sinh(x) \sin(y) \\
| |
| \sinh(x+iy) &= \sinh(x) \cos(y) + i \cosh(x) \sin(y) \\
| |
| \tanh ix &= i \tan x \\
| |
| \cosh x &= \cos ix \\
| |
| \sinh x &= - i \sin ix \\
| |
| \tanh x &= - i \tan ix
| |
| \end{align}</math>
| |
|
| |
| Thus, hyperbolic functions are [[periodic function|periodic]] with respect to the imaginary component, with period <math>2 \pi i</math> (<math>\pi i</math> for hyperbolic tangent and cotangent).
| |
|
| |
| {| style="text-align:center"
| |
| |+ Hyperbolic functions in the complex plane
| |
| |[[Image:Complex Sinh.jpg|1000x140px|none]]
| |
| |[[Image:Complex Cosh.jpg|1000x140px|none]]
| |
| |[[Image:Complex Tanh.jpg|1000x140px|none]]
| |
| |[[Image:Complex Coth.jpg|1000x140px|none]]
| |
| |[[Image:Complex Sech.jpg|1000x140px|none]]
| |
| |[[Image:Complex Csch.jpg|1000x140px|none]]
| |
| |-
| |
| |<math>\operatorname{sinh}(z)</math>
| |
| |<math>\operatorname{cosh}(z)</math>
| |
| |<math>\operatorname{tanh}(z)</math>
| |
| |<math>\operatorname{coth}(z)</math>
| |
| |<math>\operatorname{sech}(z)</math>
| |
| |<math>\operatorname{csch}(z)</math>
| |
| |}
| |
|
| |
| ==See also==
| |
| {{Commons category|Hyperbolic functions}}
| |
| * [[e (mathematical constant)]]
| |
| * [[Equal incircles theorem]], based on sinh
| |
| * [[Inverse hyperbolic function]]s
| |
| * [[List of integrals of hyperbolic functions]]
| |
| * [[Poinsot's spirals]]
| |
| * [[Sigmoid function]]
| |
| * [[Trigonometric functions]]
| |
| * [[Modified hyperbolic tangent]]
| |
|
| |
| ==References==
| |
| {{Reflist}}
| |
|
| |
|
| ==External links==
| | {{physical-chemistry-stub}} |
| * Mellon W. Haskell (1895) [http://www.ams.org/journals/bull/1895-01-06/S0002-9904-1895-00266-9/S0002-9904-1895-00266-9.pdf On the introduction of the notion of hyperbolic functions] [[Bulletin of the American Mathematical Society]] 1(6):155–9.
| | {{electromagnetism-stub}} |
| *{{springer|title=Hyperbolic functions|id=p/h048250}}
| |
| *[http://planetmath.org/hyperbolicfunctions Hyperbolic functions] on [[PlanetMath]]
| |
| *[http://mathworld.wolfram.com/HyperbolicFunctions.html Hyperbolic functions] entry at [[MathWorld]]
| |
| *[http://glab.trixon.se/ GonioLab]: Visualization of the unit circle, trigonometric and hyperbolic functions ([[Java Web Start]])
| |
| *[http://www.calctool.org/CALC/math/trigonometry/hyperbolic Web-based calculator of hyperbolic functions]
| |
|
| |
|
| {{DEFAULTSORT:Hyperbolic Function}}
| | [[ar:ثابت فاراداي]] |
| [[Category:Elementary special functions]] | | [[br:Digemmenn Faraday]] |
| [[Category:Exponentials]] | | [[ca:Constant de Faraday]] |
| [[Category:Hyperbolic geometry]] | | [[cs:Faradayova konstanta]] |
| [[Category:Analytic functions]] | | [[de:Faraday-Konstante]] |
| | [[et:Faraday arv]] |
| | [[es:Constante de Faraday]] |
| | [[eo:Konstanto de Faraday]] |
| | [[fa:ثابت فارادی]] |
| | [[fr:Constante de Faraday]] |
| | [[ko:패러데이 상수]] |
| | [[it:Costante di Faraday]] |
| | [[he:קבוע פאראדיי]] |
| | [[kk:Фарадей саны]] |
| | [[hu:Faraday-állandó]] |
| | [[nl:Faradayconstante]] |
| | [[ja:ファラデー定数]] |
| | [[pnb:فراڈے کانسٹنٹ]] |
| | [[km:ថេរហ្វារ៉ាដេយ]] |
| | [[pcd:Constante d’Faraday]] |
| | [[pl:Stała Faradaya]] |
| | [[pt:Constante de Faraday]] |
| | [[ru:Постоянная Фарадея]] |
| | [[sk:Faradayova konštanta]] |
| | [[sl:Faradayeva konstanta]] |
| | [[sr:Фарадејева константа]] |
| | [[sh:Faradayjeva konstanta]] |
| | [[fi:Faradayn vakio]] |
| | [[sv:Faradays konstant]] |
| | [[tr:Faraday sabiti]] |
| | [[uk:Число Фарадея]] |
| | [[zh:法拉第常数]] |