Gauss map: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
Cusps of the Gauss map: link ridge and parabolic line
 
en>Funandtrvl
nvbx
Line 1: Line 1:
Clear of know exactly what the entire video game world could have. There are horrors so bad in every corner and cranny. Here post includes advice close to optimizing your gaming a chance with tricks and notions you might not turn into aware of. Prolong reading for more data.<br><br>People may possibly play applications to rest following a very long working day in the workplace. Some wish socializing by tinkering considering friends and family. If you have some inquiries about where and in what ways to use Clash  Clans Cheat, you creates contact with us near the our web site. Other individuals perform the entire group when they're jobless and require something for snapping their brains away their scenario. If you are you looking for more information regarding hack clash of clans - [http://prometeu.net http://prometeu.net/] - look at our web-page. No matter reasons why you enjoy, this information will assist you to engage in with this way which is any better.<br><br>Last component There are a regarding Apple fans who play in the above game all on earth. This generation has scantily been the JRPG's best; in fact it's been for a while unanimously its worst. Exclusively at Target: Mission: Impossible 4-Pack DVD Tv with all 4 Mission: Impossible movies). Although it is a special day's grand gifts and gestures, one Valentines Day will blend into another much too easily. clash of clans is one of the quickest rising game titles as of late.<br><br>Actually is possible, but the largest percentage of absence one visit would abatement by sixty days one. 5% after 260 treasures to hundred or so gems. Or, so long as you capital to generate up the 1 business day bulk at 260 gems, the band would need to acceleration added [http://Imageshack.us/photos/considerably considerably] and also 1 house warming would turn into included in expensive.<br><br>The website not only provides undertake tools, there is perhaps even Clash of Clans hack no survey by anyone. [https://www.Vocabulary.com/dictionary/Strict+anti Strict anti] ban system take users to utilize the program and play without an hindrance. If enthusiastic gamers are interested in receiving the program, they are just required to visit fantastic site and obtain the hack tool trainer immediately. The name of the online site is Amazing Cheats. A number of site have different types for software by which many can get past a difficult situation stages in the task.<br><br>Individual world can be driven by supply and shopper demand. We shall look during the the Greek-Roman model. Using special care to highlight the role relating to clash of clans hack into tool no survey inside of a the vast framework which usually this provides.<br><br>Let's try interpreting the particular abstracts differently. Foresee of it in offer of bulk with stones to skip 1 extra. Skipping added moments expenses added money, even though you get a grander deal. Think of it as a not many accretion discounts.
In [[category theory]], an abstract branch of [[mathematics]], an '''equivalence of categories''' is a relation between two [[Category (mathematics)|categories]] that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.
 
If a category is equivalent to the [[dual (category theory)|opposite (or dual)]] of another category then one speaks of
a '''duality of categories''', and says that the two categories are '''dually equivalent'''.
 
An equivalence of categories consists of a [[functor]] between the involved categories, which is required to have an "inverse" functor. However, in contrast to the situation common for [[isomorphism]]s in an algebraic setting, the composition of the functor and its "inverse" is not necessarily the identity mapping. Instead it is sufficient that each object be ''[[natural transformation|naturally isomorphic]]'' to its image under this composition. Thus one may describe the functors as being "inverse up to isomorphism". There is indeed a concept of [[isomorphism of categories]] where a strict form of inverse functor is required, but this is of much less practical use than the ''equivalence'' concept.
 
==Definition==
Formally, given two categories ''C'' and ''D'', an ''equivalence of categories'' consists of a functor ''F'' : ''C'' → ''D'', a functor ''G'' : ''D'' → ''C'', and two natural isomorphisms ε: ''FG''→'''I'''<sub>''D''</sub> and η : '''I'''<sub>''C''</sub>→''GF''. Here ''FG'': ''D''→''D'' and ''GF'': ''C''→''C'', denote the respective compositions of ''F'' and ''G'', and '''I'''<sub>''C''</sub>: ''C''→''C'' and '''I'''<sub>''D''</sub>: ''D''→''D'' denote the ''identity functors'' on ''C'' and ''D'', assigning each object and morphism to itself. If ''F'' and ''G'' are contravariant functors one speaks of a ''duality of categories'' instead.
 
One often does not specify all the above data. For instance, we say that the categories ''C'' and ''D'' are ''equivalent'' (respectively ''dually equivalent'') if there exists an equivalence (respectively duality) between them. Furthermore, we say that ''F'' "is" an equivalence of categories if an inverse functor ''G'' and natural isomorphisms as above exist. Note however that knowledge of ''F'' is usually not enough to reconstruct ''G'' and the natural isomorphisms: there may be many choices (see example below).
 
==Equivalent characterizations==
One can show that a functor ''F'' : ''C'' → ''D'' yields an equivalence of categories if and only if it is:
* [[full functor|full]], i.e. for any two objects ''c''<sub>1</sub> and ''c''<sub>2</sub> of ''C'', the map Hom<sub>''C''</sub>(''c''<sub>1</sub>,''c''<sub>2</sub>) → Hom<sub>''D''</sub>(''Fc''<sub>1</sub>,''Fc''<sub>2</sub>) induced by ''F'' is [[surjective]];
* [[faithful functor|faithful]], i.e. for any two objects ''c''<sub>1</sub> and ''c''<sub>2</sub> of ''C'', the map Hom<sub>''C''</sub>(''c''<sub>1</sub>,''c''<sub>2</sub>) → Hom<sub>''D''</sub>(''Fc''<sub>1</sub>,''Fc''<sub>2</sub>) induced by ''F'' is [[injective]]; and
* [[essentially surjective functor|essentially surjective (dense)]], i.e. each object ''d'' in ''D'' is isomorphic to an object of the form ''Fc'', for ''c'' in ''C''.
This is a quite useful and commonly applied criterion, because one does not have to explicitly construct the "inverse" ''G'' and the natural isomorphisms between ''FG'', ''GF'' and the identity functors. On the other hand, though the above properties guarantee the ''existence'' of a categorical equivalence (given a sufficiently strong version of the [[axiom of choice]] in the underlying set theory), the missing data is not completely specified, and often there are many choices. It is a good idea to specify the missing constructions explicitly whenever possible.
Due to this circumstance, a functor with these properties is sometimes called a '''weak equivalence of categories''' (unfortunately this conflicts with terminology from homotopy theory).
 
There is also a close relation to the concept of [[adjoint functors]]. The following statements are equivalent for functors ''F'' : ''C'' → ''D'' and ''G'' : ''D'' → ''C'':
* There are natural isomorphisms from ''FG'' to '''I'''<sub>''D''</sub> and '''I'''<sub>''C''</sub> to ''GF''.
* ''F'' is a left adjoint of ''G'' and both functors are full and faithful.
* ''G'' is a right adjoint of ''F'' and both functors are full and faithful.
One may therefore view an adjointness relation between two functors as a "very weak form of equivalence". Assuming that the natural transformations for the adjunctions are given, all of these formulations allow for an explicit construction of the necessary data, and no choice principles are needed. The key property that one has to prove here is that the ''counit'' of an adjunction is an isomorphism if and only if the right adjoint is a full and faithful functor.
 
==Examples==
* Consider the category <math>C</math> having a single object <math>c</math> and a single morphism <math>1_{c}</math>, and the category <math>D</math> with two objects <math>d_{1}</math>, <math>d_{2}</math> and four morphisms: two identity morphisms <math>1_{d_{1}}</math>, <math>1_{d_{2}}</math> and two isomorphisms <math>\alpha \colon d_{1} \to d_{2}</math> and <math>\beta \colon d_{2} \to d_{1}</math>.  The categories <math>C</math> and <math>D</math> are equivalent; we can (for example) have <math>F</math> map <math>c</math> to <math>d_{1}</math> and <math>G</math> map both objects of <math>D</math> to <math>c</math> and all morphisms to <math>1_{c}</math>.
 
* By contrast, the category <math>C</math> with a single object and a single morphism is ''not'' equivalent to the category <math>E</math> with two objects and only two identity morphisms as the two objects therein are ''not'' isomorphic.
 
* Consider a category <math>C</math> with one object <math>c</math>, and two morphisms <math>1_{c}, f \colon c \to c</math>.  Let <math>1_{c}</math> be the identity morphism on <math>c</math> and set <math>f \circ f = 1</math>. Of course, <math>C</math> is equivalent to itself, which can be shown by taking <math>1_{c}</math> in place of the required natural isomorphisms between the functor <math>\mathbf{I}_{C}</math> and itself. However, it is also true that <math>f</math> yields a natural isomorphism from <math>\mathbf{I}_{C}</math> to itself.  Hence, given the information that the identity functors form an equivalence of categories, in this example one still can choose between two natural isomorphisms for each direction.
 
* Consider the category <math>C</math> of finite-[[dimension of a vector space|dimensional]] [[real number|real]] [[vector space]]s, and the category <math>D = \mathrm{Mat}(\mathbb{R})</math> of all real [[matrix (mathematics)|matrices]] (the latter category is explained in the article on [[additive category|additive categories]]).  Then <math>C</math> and <math>D</math> are equivalent: The functor <math>G \colon D \to C</math> which maps the object <math>A_{n}</math> of <math>D</math> to the vector space <math>\mathbb{R}^{n}</math> and the matrices in <math>D</math> to the corresponding linear maps is full, faithful and essentially surjective.
 
* One of the central themes of [[algebraic geometry]] is the duality of the category of [[affine scheme]]s and the category of [[commutative ring]]s.  The functor <math>G</math> associates to every commutative ring its [[spectrum of a ring|spectrum]], the scheme defined by the [[prime ideal]]s of the ring. Its adjoint <math>F</math> associates to every affine scheme its ring of global sections.  
 
* In [[functional analysis]] the category of commutative [[C*-algebra]]s with identity is contravariantly equivalent to the category of [[compact space|compact]] [[Hausdorff space]]s. Under this duality, every compact Hausdorff space <math>X</math> is associated with the algebra of continuous complex-valued functions on <math>X</math>, and every commutative C*-algebra is associated with the space of its [[maximal ideal]]s. This is the [[Gelfand representation]].  
 
* In [[lattice theory]], there are a number of dualities, based on representation theorems that connect certain classes of lattices to classes of [[topology|topological spaces]].  Probably the most well-known theorem of this kind is ''[[Stone's representation theorem for Boolean algebras]]'', which is a special instance within the general scheme of ''[[Stone duality]]''. Each [[Boolean algebra (structure)|Boolean algebra]] <math>B</math> is mapped to a specific topology on the set of [[lattice theory|ultrafilters]] of <math>B</math>.  Conversely, for any topology the clopen (i.e. closed and open) subsets yield a Boolean algebra. One obtains a duality between the category of Boolean algebras (with their homomorphisms) and [[Stone space]]s (with continuous mappings). Another case of Stone duality is [[Birkhoff's representation theorem]] stating a duality between finite partial orders and finite distributive lattices.
 
* In [[pointless topology]] the category of spatial locales is known to be equivalent to the dual of the category of sober spaces.  
 
* Any category is equivalent to its [[skeleton (category theory)|skeleton]].
 
==Properties==
As a rule of thumb, an equivalence of categories preserves all "categorical" concepts and properties. If ''F'' : ''C'' → ''D'' is an equivalence, then the following statements are all true:
* the object ''c'' of ''C'' is an [[initial object]] (or [[terminal object]], or [[zero object]]), [[if and only if]] ''Fc'' is an [[initial object]] (or [[terminal object]], or [[zero object]]) of ''D''
* the morphism α in ''C'' is a [[monomorphism]] (or [[epimorphism]], or [[isomorphism]]), if and only if ''Fα'' is a monomorphism (or epimorphism, or isomorphism) in ''D''.
* the functor ''H'' : ''I'' → ''C'' has [[limit (category theory)|limit]] (or colimit) ''l'' if and only if the functor ''FH'' : ''I'' → ''D'' has limit (or colimit) ''Fl''. This can be applied to [[equaliser (mathematics)|equalizers]], [[product (category theory)|product]]s and [[coproduct]]s among others. Applying it to [[kernel (category theory)|kernel]]s and [[cokernel]]s, we see that the equivalence ''F'' is an [[Regular_category#Exact_sequences_and_regular_functors|exact functor]].
* ''C'' is a [[cartesian closed category]] (or a [[topos]]) if and only if ''D'' is cartesian closed (or a topos).
 
Dualities "turn all concepts around": they turn initial objects into terminal objects, monomorphisms into epimorphisms, kernels into cokernels, limits into colimits etc.
 
If ''F'' : ''C'' → ''D'' is an equivalence of categories, and ''G''<sub>1</sub> and ''G''<sub>2</sub> are two inverses of ''F'', then ''G''<sub>1</sub> and ''G''<sub>2</sub> are naturally isomorphic.
 
If ''F'' : ''C'' → ''D'' is an equivalence of categories, and if ''C'' is a [[preadditive category]] (or [[additive category]], or [[abelian category]]), then ''D'' may be turned into a preadditive category (or additive category, or abelian category) in such a way that ''F'' becomes an [[additive functor]]. On the other hand, any equivalence between additive categories is necessarily additive. (Note that the latter statement is not true for equivalences between preadditive categories.)
 
An '''auto-equivalence''' of a category ''C'' is an equivalence ''F'' : ''C'' → ''C''. The auto-equivalences of ''C'' form a [[group (mathematics)|group]] under composition if we consider two auto-equivalences that are naturally isomorphic to be identical. This group captures the essential "symmetries" of ''C''. (One caveat: if ''C'' is not a small category, then the auto-equivalences of ''C'' may form a proper [[class (set theory)|class]] rather than a [[Set (mathematics)|set]].)
 
==References==
*{{Springer|id=Equivalence_of_categories|title=Equivalence of categories}}
*{{cite book|last=Mac Lane|first=Saunders|title=Categories for the working mathematician|year=1998|publisher=Springer|location=New York|isbn=0-387-98403-8|pages=xii+314}}
 
{{DEFAULTSORT:Equivalence Of Categories}}
[[Category:Adjoint functors]]
[[Category:Category theory]]

Revision as of 00:22, 29 June 2013

In category theory, an abstract branch of mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.

If a category is equivalent to the opposite (or dual) of another category then one speaks of a duality of categories, and says that the two categories are dually equivalent.

An equivalence of categories consists of a functor between the involved categories, which is required to have an "inverse" functor. However, in contrast to the situation common for isomorphisms in an algebraic setting, the composition of the functor and its "inverse" is not necessarily the identity mapping. Instead it is sufficient that each object be naturally isomorphic to its image under this composition. Thus one may describe the functors as being "inverse up to isomorphism". There is indeed a concept of isomorphism of categories where a strict form of inverse functor is required, but this is of much less practical use than the equivalence concept.

Definition

Formally, given two categories C and D, an equivalence of categories consists of a functor F : CD, a functor G : DC, and two natural isomorphisms ε: FGID and η : ICGF. Here FG: DD and GF: CC, denote the respective compositions of F and G, and IC: CC and ID: DD denote the identity functors on C and D, assigning each object and morphism to itself. If F and G are contravariant functors one speaks of a duality of categories instead.

One often does not specify all the above data. For instance, we say that the categories C and D are equivalent (respectively dually equivalent) if there exists an equivalence (respectively duality) between them. Furthermore, we say that F "is" an equivalence of categories if an inverse functor G and natural isomorphisms as above exist. Note however that knowledge of F is usually not enough to reconstruct G and the natural isomorphisms: there may be many choices (see example below).

Equivalent characterizations

One can show that a functor F : CD yields an equivalence of categories if and only if it is:

  • full, i.e. for any two objects c1 and c2 of C, the map HomC(c1,c2) → HomD(Fc1,Fc2) induced by F is surjective;
  • faithful, i.e. for any two objects c1 and c2 of C, the map HomC(c1,c2) → HomD(Fc1,Fc2) induced by F is injective; and
  • essentially surjective (dense), i.e. each object d in D is isomorphic to an object of the form Fc, for c in C.

This is a quite useful and commonly applied criterion, because one does not have to explicitly construct the "inverse" G and the natural isomorphisms between FG, GF and the identity functors. On the other hand, though the above properties guarantee the existence of a categorical equivalence (given a sufficiently strong version of the axiom of choice in the underlying set theory), the missing data is not completely specified, and often there are many choices. It is a good idea to specify the missing constructions explicitly whenever possible. Due to this circumstance, a functor with these properties is sometimes called a weak equivalence of categories (unfortunately this conflicts with terminology from homotopy theory).

There is also a close relation to the concept of adjoint functors. The following statements are equivalent for functors F : CD and G : DC:

  • There are natural isomorphisms from FG to ID and IC to GF.
  • F is a left adjoint of G and both functors are full and faithful.
  • G is a right adjoint of F and both functors are full and faithful.

One may therefore view an adjointness relation between two functors as a "very weak form of equivalence". Assuming that the natural transformations for the adjunctions are given, all of these formulations allow for an explicit construction of the necessary data, and no choice principles are needed. The key property that one has to prove here is that the counit of an adjunction is an isomorphism if and only if the right adjoint is a full and faithful functor.

Examples

  • Consider the category C having a single object c and a single morphism 1c, and the category D with two objects d1, d2 and four morphisms: two identity morphisms 1d1, 1d2 and two isomorphisms α:d1d2 and β:d2d1. The categories C and D are equivalent; we can (for example) have F map c to d1 and G map both objects of D to c and all morphisms to 1c.
  • By contrast, the category C with a single object and a single morphism is not equivalent to the category E with two objects and only two identity morphisms as the two objects therein are not isomorphic.
  • Consider a category C with one object c, and two morphisms 1c,f:cc. Let 1c be the identity morphism on c and set ff=1. Of course, C is equivalent to itself, which can be shown by taking 1c in place of the required natural isomorphisms between the functor IC and itself. However, it is also true that f yields a natural isomorphism from IC to itself. Hence, given the information that the identity functors form an equivalence of categories, in this example one still can choose between two natural isomorphisms for each direction.
  • In pointless topology the category of spatial locales is known to be equivalent to the dual of the category of sober spaces.
  • Any category is equivalent to its skeleton.

Properties

As a rule of thumb, an equivalence of categories preserves all "categorical" concepts and properties. If F : CD is an equivalence, then the following statements are all true:

Dualities "turn all concepts around": they turn initial objects into terminal objects, monomorphisms into epimorphisms, kernels into cokernels, limits into colimits etc.

If F : CD is an equivalence of categories, and G1 and G2 are two inverses of F, then G1 and G2 are naturally isomorphic.

If F : CD is an equivalence of categories, and if C is a preadditive category (or additive category, or abelian category), then D may be turned into a preadditive category (or additive category, or abelian category) in such a way that F becomes an additive functor. On the other hand, any equivalence between additive categories is necessarily additive. (Note that the latter statement is not true for equivalences between preadditive categories.)

An auto-equivalence of a category C is an equivalence F : CC. The auto-equivalences of C form a group under composition if we consider two auto-equivalences that are naturally isomorphic to be identical. This group captures the essential "symmetries" of C. (One caveat: if C is not a small category, then the auto-equivalences of C may form a proper class rather than a set.)

References

  • Other Sports Official Kull from Drumheller, has hobbies such as telescopes, property developers in singapore and crocheting. Identified some interesting places having spent 4 months at Saloum Delta.

    my web-site http://himerka.com/
  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534