Potential well: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>Bibcode Bot
m Adding 0 arxiv eprint(s), 4 bibcode(s) and 1 doi(s). Did it miss something? Report bugs, errors, and suggestions at User talk:Bibcode Bot
 
en>JoeSperrazza
Reverted 1 edit by Tdadamemd (talk): Rv not related. (TW)
Line 1: Line 1:
You probably have your desired number of gems, you can be able to negotiate prepared intelligently to look after myself against any factor you like. Action exciting since it enables you to enjoy like a experienced and you can worry just about anyone should a playing skills are formidable.<br><br>amend delivers a bunch of notable enhancements, the alignment of which could becoming the new Dynasty Competition Manner. In this mode, you can making claims combating dynasties and stop utter rewards aloft their beat.<br><br>Nevertheless, if you want to be able to at the top of the competitors, there are several simple points you want to keep in mind. Realize your foe, grasp the game and the win will be yours. It is possible to look at the aid of clash of clans hack tools and second rights if you such as your course. So that for your convenience, listed here the general details in this particular sport that you need to remember of. As a result of all of them scrupulously!<br><br>Computer games offer entertaining that would everybody, and they remain surely more complicated as Frogger was! Towards get all you will be able to out of game titles, use the advice put out here. An individual going to find each exciting new world into gaming, and you would want to wonder how you actually ever got by without items!<br><br>Deliver the in-online game songs option. If, nonetheless, you might be annoyed by using the software soon after one hour approximately, don't be upset to mute the television set or [http://Search.un.org/search?ie=utf8&site=un_org&output=xml_no_dtd&client=UN_Website_en&num=10&lr=lang_en&proxystylesheet=UN_Website_en&oe=utf8&q=personal&Submit=Go personal] computer and so play some audio of one's very own. You will find a far more enjoyment game playing experience in this and therefore are a lot of unlikely to get that you simply frustration from actively actively.<br><br>It's tough to select the appropriate xbox game gaming console. In the beginning, you should think about your standard requirements to be a video game player, accompanied by check out the extra features made available from for each unit you are considering.  For more info on clash of clans hack android ([http://circuspartypanama.com Going On this page]) look into our website. Consider investigating on-line. Check stories to ascertain if former gamers have discovered difficulty with the unit. Ahead of buying a game process, you should know as much as you are able with regarding it.<br><br>Plainly individuals who produced these Crack Clash of Family members are true fans linked with the sport themselves, and this is exactly all that ensures the potency among our alternative, because experts needed to do the idea ourselves.
{{Otheruses4|intransitivity in mathematics|the linguistics sense|Intransitive verb}}
In [[mathematics]], the term '''intransitivity''' is used for related, but different, properties of [[binary relation]]s:
 
== Intransitivity ==
 
A relation is [[transitive relation|transitive]] if, whenever it relates some A to some B, and that B to some C, it also relates that A to that C. Some authors call a relation  ''intransitive'' if it is not transitive, i.e.
 
:<math>\neg\forall a, b, c: a R b \wedge b R c \Rightarrow a R c.</math>
 
Where <math>R</math> indicates some relationship.
 
For instance, in the [[food chain]], wolves feed on deer, and deer feed on grass, but wolves do not feed on grass.<ref>Wolves do ''eat'' grass - see {{cite book|title=Wild Health: Lessons in Natural Wellness from the Animal Kingdom|first1=Cindy|last1=Engel|year=2003|edition=paperback|publisher=Houghton Mifflin|isbn=0-618-34068-8|page=141}}.</ref> Thus, the ''feed on'' relation among life forms is intransitive, in this sense.
 
Another example that does not involve preference loops arises in [[freemasonry]]: it may be the case that lodge A recognizes lodge B, and lodge B recognizes lodge C, but lodge A does not recognize lodge C. Thus the recognition relation among Masonic lodges is intransitive.
 
==Antitransitivity==
 
Often the term '''intransitive''' is used to refer to the [[mathematical jargon#stronger|stronger property]] of antitransitivity.
 
We just saw that the ''feed on'' relation is not transitive, but it still contains some transitivity: for instance: humans feed on rabbits, rabbits feed on carrots, and humans also feed on carrots.
 
A relation is '''antitransitive''' if this never occurs at all, i.e.,
 
:<math>\forall a, b, c: a R b \wedge b R c \Rightarrow \neg a R c</math>
 
Many authors use the term intransitivity to mean antitransitivity.<ref>[http://www.jgsee.kmutt.ac.th/exell/Logic/Logic42.htm#33 Guide to Logic, Relations II<!-- Bot generated title -->]</ref><ref>[http://www.virtual.cvut.cz/kifb/en/concepts/_intransitive_relation.html IntransitiveRelation<!-- Bot generated title -->]</ref>
 
An example of an antitransitive relation: the ''defeated'' relation in [[Tournament#Knockout tournaments|knockout tournaments]].  If player A defeated player B and player B defeated player C, A can have never played C, and therefore, A has not defeated C.
 
==Cycles==
 
The term ''intransitivity'' is often used when speaking of scenarios in which a relation describes the relative preferences between pairs of options, and weighing several options produces a "loop" of preference:
 
*A is preferred to B
*B is preferred to C
*C is preferred to A
 
[[Rock, paper, scissors]] is an example.
 
Assuming no option is preferred to itself i.e. the relation is [[irreflexive]], a preference relation with a loop is not transitive. For if it is, each option in the loop is preferred to each option, including itself. This can be illustrated for this example of a loop among A, B, and C. Assume the relation is transitive. Then, since A is preferred to B and B is preferred to C, also A is preferred to C. But then, since C is preferred to A, also A is preferred to A.
 
Therefore such a preference loop (or "[[cycle (graph theory)|cycle]]") is known as an '''intransitivity'''.
 
Notice that a cycle is neither necessary nor sufficient for a binary relation to be not transitive.  For example, an [[equivalence relation]] possesses cycles but is transitive.  Now, consider the relation "is an enemy of" and suppose that the relation is symmetric and satisfies the condition that for any country, any enemy of an enemy of the country is not itself an enemy of the country. This is an example of an antitransitive relation that does not have any cycles.  In particular, by virtue of being antitransitive the relation is not transitive.
 
Finally, let us work with the example of [[rock, paper, scissors]], calling the three options A, B, and C.
Now, the relation over A, B, and C is "defeats" and the standard rules of the game are such that A defeats B, B defeats C, and C defeats A. Furthermore, it is also true that B does not defeat A, C does not defeat B, and A does not defeat C.  Finally, it is also true that no option defeats itself. This information can be depicted in a table:
{| class="wikitable" style="text-align:center;
! !! A !! B !! C
|-
! A
| 0 || 1 || 0
|-
! B
| 0 || 0 || 1
|-
! C
| 1 || 0 || 0
|}
 
The first argument of the relation is a row and the second one is a column.  Ones indicate the relation holds, zero indicates that it does not hold.  Now, notice that the following statement is true for any pair of elements x and y drawn (with replacement) from the set {A, B, C}: If x defeats y, and y defeats z, then x does not defeat z.  Hence the relation is antitransitive.
 
Thus, a cycle is neither necessary nor sufficient for a binary relation to be antitransitive.
 
==Occurrences in preferences<!--This section is linked from [[Preference (economics)]]-->==
 
* Intransitivity can occur under [[majority rule]], in probabilistic outcomes of [[game theory]], and in the [[Condorcet voting]] method in which ranking several candidates can produce a loop of preference when the weights are compared (see [[voting paradox]]). [[Intransitive dice]] demonstrate that probabilities are not necessarily transitive.
* In [[psychology]], intransitivity often occurs in a person's [[Value system|system of values]] (or [[preference]]s, or [[Taste (sociology)|tastes]]), potentially leading to unresolvable conflicts.
* Analogously, in [[economics]] intransitivity can occur in a consumer's [[Preference#Preference in economics|preferences]]. This may lead to consumer behaviour that does not conform to perfect [[Rationality#Rationality in the humanities and social sciences|economic rationality]]. In recent years, economists and philosophers have questioned whether violations of transitivity must necessarily lead to 'irrational behaviour' (see Anand (1993)).
 
==Likelihood==
 
It has been suggested that [[Condorcet method|Condorcet voting]] tends to eliminate "intransitive loops" when large numbers of voters participate because the overall assessment criteria for voters balances out.  For instance, voters may prefer candidates on several different units of measure such as by order of social consciousness or by order of most fiscally conservative.
 
In such cases intransitivity reduces to a broader equation of numbers of people and the weights of their units of measure in assessing candidates. 
 
Such as:
 
*30% favor 60/40 weighting between social consciousness and fiscal conservatism
*50% favor 50/50 weighting between social consciousness and fiscal conservatism
*20% favor a 40/60 weighting between social consciousness and fiscal conservatism
 
While each voter may not assess the units of measure identically, the trend then becomes a single [[probability vector|vector]] on which the [[consensus]] agrees is a preferred balance of candidate criteria.
 
==References==
<references/>
==Further reading==
*{{cite book|last1=Anand|first1=P|year=1993|title=Foundations of Rational Choice Under Risk|location=Oxford|publisher=Oxford University Press}}.
[[Category:Mathematical relations]]
 
[[de:Intransitive Relation]]

Revision as of 18:49, 1 January 2014

Template:Otheruses4 In mathematics, the term intransitivity is used for related, but different, properties of binary relations:

Intransitivity

A relation is transitive if, whenever it relates some A to some B, and that B to some C, it also relates that A to that C. Some authors call a relation intransitive if it is not transitive, i.e.

¬a,b,c:aRbbRcaRc.

Where R indicates some relationship.

For instance, in the food chain, wolves feed on deer, and deer feed on grass, but wolves do not feed on grass.[1] Thus, the feed on relation among life forms is intransitive, in this sense.

Another example that does not involve preference loops arises in freemasonry: it may be the case that lodge A recognizes lodge B, and lodge B recognizes lodge C, but lodge A does not recognize lodge C. Thus the recognition relation among Masonic lodges is intransitive.

Antitransitivity

Often the term intransitive is used to refer to the stronger property of antitransitivity.

We just saw that the feed on relation is not transitive, but it still contains some transitivity: for instance: humans feed on rabbits, rabbits feed on carrots, and humans also feed on carrots.

A relation is antitransitive if this never occurs at all, i.e.,

a,b,c:aRbbRc¬aRc

Many authors use the term intransitivity to mean antitransitivity.[2][3]

An example of an antitransitive relation: the defeated relation in knockout tournaments. If player A defeated player B and player B defeated player C, A can have never played C, and therefore, A has not defeated C.

Cycles

The term intransitivity is often used when speaking of scenarios in which a relation describes the relative preferences between pairs of options, and weighing several options produces a "loop" of preference:

  • A is preferred to B
  • B is preferred to C
  • C is preferred to A

Rock, paper, scissors is an example.

Assuming no option is preferred to itself i.e. the relation is irreflexive, a preference relation with a loop is not transitive. For if it is, each option in the loop is preferred to each option, including itself. This can be illustrated for this example of a loop among A, B, and C. Assume the relation is transitive. Then, since A is preferred to B and B is preferred to C, also A is preferred to C. But then, since C is preferred to A, also A is preferred to A.

Therefore such a preference loop (or "cycle") is known as an intransitivity.

Notice that a cycle is neither necessary nor sufficient for a binary relation to be not transitive. For example, an equivalence relation possesses cycles but is transitive. Now, consider the relation "is an enemy of" and suppose that the relation is symmetric and satisfies the condition that for any country, any enemy of an enemy of the country is not itself an enemy of the country. This is an example of an antitransitive relation that does not have any cycles. In particular, by virtue of being antitransitive the relation is not transitive.

Finally, let us work with the example of rock, paper, scissors, calling the three options A, B, and C. Now, the relation over A, B, and C is "defeats" and the standard rules of the game are such that A defeats B, B defeats C, and C defeats A. Furthermore, it is also true that B does not defeat A, C does not defeat B, and A does not defeat C. Finally, it is also true that no option defeats itself. This information can be depicted in a table:

A B C
A 0 1 0
B 0 0 1
C 1 0 0

The first argument of the relation is a row and the second one is a column. Ones indicate the relation holds, zero indicates that it does not hold. Now, notice that the following statement is true for any pair of elements x and y drawn (with replacement) from the set {A, B, C}: If x defeats y, and y defeats z, then x does not defeat z. Hence the relation is antitransitive.

Thus, a cycle is neither necessary nor sufficient for a binary relation to be antitransitive.

Occurrences in preferences

  • Intransitivity can occur under majority rule, in probabilistic outcomes of game theory, and in the Condorcet voting method in which ranking several candidates can produce a loop of preference when the weights are compared (see voting paradox). Intransitive dice demonstrate that probabilities are not necessarily transitive.
  • In psychology, intransitivity often occurs in a person's system of values (or preferences, or tastes), potentially leading to unresolvable conflicts.
  • Analogously, in economics intransitivity can occur in a consumer's preferences. This may lead to consumer behaviour that does not conform to perfect economic rationality. In recent years, economists and philosophers have questioned whether violations of transitivity must necessarily lead to 'irrational behaviour' (see Anand (1993)).

Likelihood

It has been suggested that Condorcet voting tends to eliminate "intransitive loops" when large numbers of voters participate because the overall assessment criteria for voters balances out. For instance, voters may prefer candidates on several different units of measure such as by order of social consciousness or by order of most fiscally conservative.

In such cases intransitivity reduces to a broader equation of numbers of people and the weights of their units of measure in assessing candidates.

Such as:

  • 30% favor 60/40 weighting between social consciousness and fiscal conservatism
  • 50% favor 50/50 weighting between social consciousness and fiscal conservatism
  • 20% favor a 40/60 weighting between social consciousness and fiscal conservatism

While each voter may not assess the units of measure identically, the trend then becomes a single vector on which the consensus agrees is a preferred balance of candidate criteria.

References

  1. Wolves do eat grass - see 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534.
  2. Guide to Logic, Relations II
  3. IntransitiveRelation

Further reading

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534.

de:Intransitive Relation