Tensile structure: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
en>MathewTownsend
 
en>ArionEstar
Line 1: Line 1:
== maggio 2010danah Boyd Scarpe Mbt ==
The '''Sortino ratio''' was created by Brian M. Rom at the software development company Investment Technologies in 1983.  The ratio is named for Dr. Frank A. Sortino, an early popularizer of downside risk optimization.  It measures the [[Risk adjusted return on capital|risk-adjusted return]] of an investment [[asset]], [[financial portfolio|portfolio]] or [[trading strategy|strategy]]. It is a modification of the [[Sharpe ratio]] but penalizes only those returns falling below a user-specified target, or required [[rate of return]], while the Sharpe ratio penalizes both upside and downside [[Volatility (finance)|volatility]] equally.  Though both ratios measure an investment's risk-adjusted returns, they do so in significantly different ways that will frequently lead to differing conclusions as to the true nature of the investment's return-generating efficiency. 


Mi dà come un ronzio e il calcio inizia la mia nuova stagione di mentalità. Gran parte dei nostri centri di lavoro sulle tecnologie emergenti Web 2.0, tra cui Twitter, Facebook, YouTube, ecc MSR TR 2010 60 15 maggio 2010Sarita Yardi e Danah Boyd, Tweeting dalla Piazza della Città: Misurazione geografiche reti locali, in International Conference on Weblogs e Social Media, American Association for Artificial Intelligence, maggio 2010danah Boyd, Making Sense di privacy e pubblicità, no. <br><br>È più interessante di essere in una camera d'albergo e mangiare in un luogo diverso e esco. Le persone che si iscrivono in grado sicuramente hanno l'ambizione e vogliono progredire professionalmente. Registrato presso IATA come Approvato Consultant International Travel. <br><br>Forse alcuni dei giochi ottenere un po 'noioso nel tempo? Certo che hanno fatto, [http://www.rifugiamoci.it/ImgCatalogo/Animazione/menu.asp Scarpe Mbt] e questo è probabilmente il motivo ho smesso di giocare dopo aver completato il corso di base iniziale. Dopo alcuni falliti tentativi di modifica di questo, ecco un video clip di Newberg spiegare le sue opinioni durante la nostra intervista: Cosa ne pensi Pensi scansioni cerebrali e delle neuroscienze possono dirci nulla di significativo circa la religione Segui FaithWorld su Twitter RTRFaithWorldDoing meditazione regolare? aumenta la consapevolezza, riduce lo stress e [http://www.ilmercantedisogni.it/Slide/small/form.asp Occhiali Da Sole Gucci] aiuta l'intero sistema mente corpo per raggiungere lo stato di homeostasis.Mindfulness è la tecnica di meditazione che trovo più pratico, che porta la persona al 100% nel momento presente. <br><br>Sembra molto probabile però che sarebbe stato aggredito per il suo telefono cellulare e guardare anche se lui non era portando il gioco. So quanto la sua fede gli fortificato durante la sua malattia.. [10] Il 23 giugno un altro decreto firmato da Aguinaldo è stato rilasciato , sostituendo il governo dittatoriale con un governo rivoluzionario, con se stesso come presidente. <br><br>Egli doesn tirare pugni perché crede nel valore di sollevare altri up! Lo potete trovare in simbolista. Mia mamma lavora nell'ufficio del presidente di un collegio comunità statale con circa 6500 studenti nel sud rurale. Ben 1 su 3 madri che allattano al seno possono avere mastite. <br><br>In primo luogo, assicurarsi te stesso che il nome [http://www.ilmercantedisogni.it/Popups/fold.asp Pandora Roma] del bookmaker scelto per le scommesse [http://www.ilmercantedisogni.it/Slide/small/form.asp Gucci Occhiali] online è affidabile. Sono i camion militari che stanno facendo il problema e bloccando alcune delle strade principali.'. Non mi riferisco a molte delle loro esperienze, forse perché io lavoro in un campo dominato molto male, forse perché i miei hobby principali sono maschilista, forse perché mia madre non era particolarmente ricettivo ogni volta ho scelto di aprirsi a lei.<ul>
The Sortino ratio is used as a way to compare the risk adjusted performance of programs with differing risk and return profiles. Any risk adjusted return is just trying to normalize the risk across programs, and then see which has the higher return unit per risk.<ref name="AttainCapital">{{cite web|url=http://managed-futures-blog.attaincapital.com/2013/09/11/sortino-ratio-are-you-calculating-it-wrong/ |accessdate=September 12, 2013 |title=Sortino Ratio: Are you calculating it wrong? |publisher=Attain Capital}}</ref>
 
  <li>[http://morigele.com/bbs/read.php?tid=10012267&page=e#a] http://morigele.com/bbs/read.php?tid=10012267&page=e#a]]</li>
 
  <li>[http://bbs.ykdai.cn/showtopic-151322.aspx http://bbs.ykdai.cn/showtopic-151322.aspx]</li>
 
  <li>[http://bbs.thinkidea.net/forum.php?mod=viewthread&tid=693207&fromuid=192420 http://bbs.thinkidea.net/forum.php?mod=viewthread&tid=693207&fromuid=192420]</li>
 
  <li>[http://clan.gamescraft.de/index.php?site=guestbook http://clan.gamescraft.de/index.php?site=guestbook]</li>
 
</ul>


== presentando il libro con lo stesso nome. Nr. Beats Cuffie ==
== Definition ==
The ratio is calculated as:


Elemento di rilevamento cromatografica liquido selettivo è stata preliminarmente esaminata monitorando 2,6 diclorobenzene e 5,7 dichlorohydroxyquinoline al Cl riga di emissione atomica 479.5nm. Limiti di rilevabilità cloro nella gamma 3 (70 sono stati ottenuti:. Applicazione di accoppiamento induttivo spettrometria di massa a plasma nel metabolismo dei farmaci studiesBente Gammelgaard, Berit Packert Jensen [mostra abstract] [hide astratto] ABSTRACT: Nel scoperta di nuovi farmaci candidati, profilazione e quantificazione di metaboliti sono di fondamentale importanza. <br><br>Anche il suggerimento del dietista di andare a letto prima non ha funzionato. Ciò che ha contribuito, però, è scegliere quello che per uno spuntino. 'Se [http://www.entecerma.it/FCKeditor/editor/css/back.asp Beats Cuffie] in precedenza era Camembert con cracker e [http://www.ilmercantedisogni.it/Slide/small/form.asp Occhiali Da Vista Gucci] chutney di fichi, o peggio scaglie di prosciutto grasso e salumi, ora scavo in semi di girasole, noci, o un tuffo come tzatziki, hummus o baba ghanoush con bastoncini di verdure. <br><br>Una delle cause di divorzio è il matrimonio affrettate. Matrimoni affrettati significa che i due partner non hanno imparato a conoscere bene a vicenda. Questo è raffigurato nel gioco attraverso i matrimoni di Nerrisa e Graziano che si sposano tra di loro dopo aver conosciuto l'altro per poche ore; Bassano e Portio anche [http://www.lipinutragen.it/Templates/Stili/list.asp Nike Air Max 2013] sposarsi senza una preventiva conoscenza gli uni degli altri.. <br><br>Secondo questa teoria, le particelle di [http://www.rifugiamoci.it/ImgCatalogo/home/mail.asp Louis Vuitton Napoli] polvere lunare sul lato diurno della luna può costruire una carica positiva quando la radiazione del sole calci gli elettroni degli atomi di polvere. Ma sul lato della luna che scuri, particelle di polvere possono avere una carica negativa quando vengono bombardati con elettroni del vento solare. Qualora le parti scure e chiare incontrano, le forze elettriche potrebbe levitare questa polvere a carico elevato dalla superficie lunare, i ricercatori hanno detto.. <br><br>Basata sulla nuova tecnologia Flash. Parte del sito della foresta del fantasma, presentando il libro con lo stesso nome. Nr. Basata sulla nuova tecnologia Flash. Parte del sito della foresta del fantasma, presentando il libro con lo stesso nome. Nr. Basata sulla nuova tecnologia Flash. Parte del sito della foresta del fantasma, presentando il libro con lo stesso nome. Nr. <br><br>Nessun scarafaggi qui RAID è l'acronimo di Array of Inexpensive Disks esso una tecnologia complessa che consente a più dischi a basso costo per essere utilizzati insieme. Ci sono un sacco di strategie RAID, ma con due dischi che sono copie esatte di ogni altro nello stesso sistema che noi chiamiamo uno specchio è uno dei modi più semplici e più economici per proteggere i dati. Io so che pensare, aveva uno specchio, e didn aiutarli! Ma, ricordate la nostra lista rischio? JournalSpace aveva un livello di rischio 1, e ho accennato in precedenza hanno frainteso come specchi funzionano.<ul>
: <math>S = \frac{R-T}{DR}</math>,
 
 
  <li>[http://auditionlive.com/activity/p/27842/ http://auditionlive.com/activity/p/27842/]</li>
where R is the asset or portfolio average realized return; T is the target or required rate of return for the investment strategy under consideration, (T was originally known as the minimum acceptable return, or MAR); DR is the target semi-deviation (the square root of target semivariance) and is termed downside deviation. It is expressed in percentages and therefore allows for rankings in the same way as [[standard deviation]].
 
 
  <li>[http://chancegardner.backstagemamas.com/guestbook/index.php?entry=22987 http://chancegardner.backstagemamas.com/guestbook/index.php?entry=22987]</li>
An intuitive way to view downside risk is the annualized standard deviation of returns below the target. Another is the square root of the probability-weighted squared below-target returns. The squaring of the below-target returns has the effect of penalizing failures at an exponential rate. This is consistent with observations made on the behavior of individual decision-making under uncertainty.
 
 
  <li>[http://yakcho.egloos.com/6770080/ http://yakcho.egloos.com/6770080/]</li>
: <math>DR = \sqrt{ \int_{-\infty}^T (T-r)^2f(r)\,dr } </math>
 
 
  <li>[http://www.cnrta.org/forum.php?mod=viewthread&tid=960445 http://www.cnrta.org/forum.php?mod=viewthread&tid=960445]</li>
where
 
 
</ul>
''DR'' = downside deviation (commonly known in the financial community as 'downside risk'). Note: By extension, ''DR''² = downside variance.
 
''T'' = the annual target return, originally termed the minimum acceptable return, or MAR.
 
''r'' = the random variable representing the return for the distribution of annual returns ''f''(''r'').
 
''f''(''r'') = the [[probability density function|distribution]] for the annual returns, e.g. the three-parameter [[lognormal distribution]].
 
For the reasons provided below, this ''continuous'' formula is preferred over a simpler ''discrete'' version that determines the standard deviation of below-target periodic returns taken from the return series.
 
1. The continuous form permits all subsequent calculations to be made using annual returns which is the natural way for investors to specify their investment goals. The discrete form requires monthly returns for there to be sufficient data points to make a meaningful calculation, which in turn requires converting the annual target into a monthly target. This significantly affects the amount of risk that is identified. For example, a goal of earning 1% in every month of one year results in a greater risk than the seemingly equivalent goal of earning 12% in one year.
 
2. A second reason for strongly preferring the continuous form to the discrete form has been proposed by Sortino & Forsey (1996):
<blockquote>
"Before we make an investment, we don't know what the outcome will be... After the investment is made, and we want to measure its performance, all we know is what the outcome was, not what it could have been. To cope with this uncertainty, we assume that a reasonable estimate of the range of possible returns, as well as the probabilities associated with estimation of those returns...In statistical terms, the shape of [this] uncertainty is called a probability distribution. In other words, looking at just the discrete monthly or annual values does not tell the whole story."
</blockquote>
Using the observed points to create a distribution is a staple of conventional performance measurement. For example, monthly returns are used to calculate a fund's mean and standard deviation. Using these values and the properties of the normal distribution, we can make statements such as the likelihood of losing money (even though no negative returns may actually have been observed), or the range within which two-thirds of all returns lies (even though the specific returns identifying this range have not necessarily occurred). Our ability to make these statements comes from the process of assuming the continuous form of the normal distribution and certain of its well-known properties.
 
In [[post-modern portfolio theory]] an analogous process is followed:
#Observe the monthly returns,
#Fit a distribution that permits asymmetry to the observations,
#Annualize the monthly returns, making sure the shape characteristics of the distribution are retained,
#Apply integral calculus to the resultant distribution to calculate the appropriate statistics.
 
CAVEAT: Some practitioners have fallen into the habit of using discrete periodic returns to compute downside risk.  This method is conceptually and operationally incorrect and negates the foundational statistic of post-modern portfolio theory which was built a quarter-century ago by Brian M. Rom and Frank A. Sortino.
 
==Usage==
 
The Sortino ratio is used to score a portfolio's risk-adjusted returns relative to an investment target using downside risk.  This is analogous to the Sharpe ratio which scores risk-adjusted returns relative to the risk-free rate using standard deviation. When return distributions are near symmetrical, and the target return is close to the distribution median, these two measure will produce similar results. As skewness increases and targets vary from the median, results can be expected to show dramatic differences.
 
==See also==
*[[Modern Portfolio Theory]]
*[[Modigliani Risk-Adjusted Performance]]
*[[Post-modern portfolio theory]]
*[[Sharpe ratio]]
*[[Upside potential ratio]]
*[[V2 ratio]]
 
==References==
{{reflist}}
 
{{stock market}}
 
 
[[Category:Financial ratios]]

Revision as of 13:20, 30 November 2013

The Sortino ratio was created by Brian M. Rom at the software development company Investment Technologies in 1983. The ratio is named for Dr. Frank A. Sortino, an early popularizer of downside risk optimization. It measures the risk-adjusted return of an investment asset, portfolio or strategy. It is a modification of the Sharpe ratio but penalizes only those returns falling below a user-specified target, or required rate of return, while the Sharpe ratio penalizes both upside and downside volatility equally. Though both ratios measure an investment's risk-adjusted returns, they do so in significantly different ways that will frequently lead to differing conclusions as to the true nature of the investment's return-generating efficiency.

The Sortino ratio is used as a way to compare the risk adjusted performance of programs with differing risk and return profiles. Any risk adjusted return is just trying to normalize the risk across programs, and then see which has the higher return unit per risk.[1]

Definition

The ratio is calculated as:

S=RTDR,

where R is the asset or portfolio average realized return; T is the target or required rate of return for the investment strategy under consideration, (T was originally known as the minimum acceptable return, or MAR); DR is the target semi-deviation (the square root of target semivariance) and is termed downside deviation. It is expressed in percentages and therefore allows for rankings in the same way as standard deviation.

An intuitive way to view downside risk is the annualized standard deviation of returns below the target. Another is the square root of the probability-weighted squared below-target returns. The squaring of the below-target returns has the effect of penalizing failures at an exponential rate. This is consistent with observations made on the behavior of individual decision-making under uncertainty.

DR=T(Tr)2f(r)dr

where

DR = downside deviation (commonly known in the financial community as 'downside risk'). Note: By extension, DR² = downside variance.

T = the annual target return, originally termed the minimum acceptable return, or MAR.

r = the random variable representing the return for the distribution of annual returns f(r).

f(r) = the distribution for the annual returns, e.g. the three-parameter lognormal distribution.

For the reasons provided below, this continuous formula is preferred over a simpler discrete version that determines the standard deviation of below-target periodic returns taken from the return series.

1. The continuous form permits all subsequent calculations to be made using annual returns which is the natural way for investors to specify their investment goals. The discrete form requires monthly returns for there to be sufficient data points to make a meaningful calculation, which in turn requires converting the annual target into a monthly target. This significantly affects the amount of risk that is identified. For example, a goal of earning 1% in every month of one year results in a greater risk than the seemingly equivalent goal of earning 12% in one year.

2. A second reason for strongly preferring the continuous form to the discrete form has been proposed by Sortino & Forsey (1996):

"Before we make an investment, we don't know what the outcome will be... After the investment is made, and we want to measure its performance, all we know is what the outcome was, not what it could have been. To cope with this uncertainty, we assume that a reasonable estimate of the range of possible returns, as well as the probabilities associated with estimation of those returns...In statistical terms, the shape of [this] uncertainty is called a probability distribution. In other words, looking at just the discrete monthly or annual values does not tell the whole story."

Using the observed points to create a distribution is a staple of conventional performance measurement. For example, monthly returns are used to calculate a fund's mean and standard deviation. Using these values and the properties of the normal distribution, we can make statements such as the likelihood of losing money (even though no negative returns may actually have been observed), or the range within which two-thirds of all returns lies (even though the specific returns identifying this range have not necessarily occurred). Our ability to make these statements comes from the process of assuming the continuous form of the normal distribution and certain of its well-known properties.

In post-modern portfolio theory an analogous process is followed:

  1. Observe the monthly returns,
  2. Fit a distribution that permits asymmetry to the observations,
  3. Annualize the monthly returns, making sure the shape characteristics of the distribution are retained,
  4. Apply integral calculus to the resultant distribution to calculate the appropriate statistics.

CAVEAT: Some practitioners have fallen into the habit of using discrete periodic returns to compute downside risk. This method is conceptually and operationally incorrect and negates the foundational statistic of post-modern portfolio theory which was built a quarter-century ago by Brian M. Rom and Frank A. Sortino.

Usage

The Sortino ratio is used to score a portfolio's risk-adjusted returns relative to an investment target using downside risk. This is analogous to the Sharpe ratio which scores risk-adjusted returns relative to the risk-free rate using standard deviation. When return distributions are near symmetrical, and the target return is close to the distribution median, these two measure will produce similar results. As skewness increases and targets vary from the median, results can be expected to show dramatic differences.

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

Template:Stock market