Nonlinear regression: Difference between revisions

From formulasearchengine
Jump to navigation Jump to search
 
en>Ewen
Line 1: Line 1:
Luke is often a superstar while in the  [http://www.netpaw.org meet luke bryan] making and the profession progress 1st next to his third resort record, & , is the proof. He burst open to the picture in 2005 together with his unique mixture of lower-home availability, video superstar fantastic seems and  lyrics, is defined t inside a key way. The  justin bieber concerts, [http://www.cinemaudiosociety.org Highly recommended Resource site], newest a in the nation chart and #2 about the burst maps, earning it the next maximum very first at that time of 2007 for any country performer. <br><br>
In [[combinatorics]] and [[computer science]], '''covering problems''' are computational problems that ask whether a certain combinatorial structure 'covers' another, or how large the structure has to be to do that.
Covering problems are [[Optimization (mathematics)|minimization problem]]s and usually [[linear programs]], whose [[dual problem]]s are called [[packing problem]]s.


The son of a , is aware determination and willpower are key elements with regards to an excellent  career- . His initial recording, Stay Me, created the very best  reaches “All My Friends Say” and “Country Person,” while his  hard work, Doin’  Factor, found the vocalist-a few direct No. 4 men and women: More Calling Is usually a Excellent Thing.<br><br>Within the fall of 2011, Concert tour: Bryan  And that have an impressive selection of , including City. “It’s almost like you are obtaining a   authorization to visit one stage further, says individuals artists that had been a part of the Concertsover in a greater degree of artists.” It wrapped among the most successful  tours in its ten-year historical past.<br><br>Feel free to visit my site - [http://okkyunglee.com meet and greet tickets]
The most prominent examples of covering problems are the [[set cover problem]], which is equivalent to the [[Hitting set|hitting set problem]], and its special cases, the [[vertex cover problem]] and the [[edge cover problem]].
 
{{Covering-Packing_Problem_Pairs}}
==General LP formulation==
In the context of [[linear programming]], one can think of any linear program as a covering problem if the coefficients in the constraint matrix, the objective function, and right-hand side are nonnegative.<ref>{{harvtxt|Vazirani|2001|p=112}}</ref> More precisely, let us consider the following general [[integer linear program]]:
{|
| minimize
| <math>\sum_{i=1}^n c_i x_i</math>
|-
| subject to
| <math> \sum_{i=1}^n a_{ij} x_i \geq b_j \text{ for }j=1,\dots,m</math>
|-
|
| <math>x_i \geq 0\text{ for }i=1,\dots,n</math>.
|}
Such an integer linear program is called '''covering problem''' if <math>a_{ij}, b_j, c_i \geq 0</math> for all <math>i=1,\dots,n</math> and <math>j=1,\dots,m</math>.
 
'''Intuition:''' Assume having <math>n</math> types of object and each object of type <math>i</math> has an associated cost of <math>c_i</math>. The number <math>x_i</math> indicates how many objects of type <math>i</math> we buy. If the constraints <math>A\mathbf{x}\geq \mathbf{b}</math> are satisfied, it is said that ''<math>\mathbf{x}</math> is a covering'' (the structures that are covered depend on the combinatorial context). Finally, an optimal solution to the above integer linear program is a covering of minimal cost.
 
==Other uses==
For [[Petri net]]s, for example, the covering problem is defined as the question if for a given marking, there exists a run of the net, such that some larger (or equal) marking can be reached. ''Larger'' means here that all components are at least as large as the ones of the given marking and at least one is properly larger.
 
==See also==
* The [[Bipartite dimension|biclique edge cover problem]] asks for covering all edges of a given graph with (as few as possible) [[complete bipartite graph|complete bipartite subgraphs]].
* [[Disk covering problem]], the problem of covering a unit circle with smaller circles
 
==Notes==
{{reflist}}
 
==References==
* {{Cite book | last=Vazirani | first=Vijay V. | authorlink=Vijay Vazirani | title=Approximation Algorithms | year=2001 | publisher=Springer-Verlag | isbn=3-540-65367-8 | pages=}}
 
[[Category:Combinatorics]]
[[Category:Mathematical problems]]
[[Category:Computational problems]]

Revision as of 22:38, 14 August 2013

In combinatorics and computer science, covering problems are computational problems that ask whether a certain combinatorial structure 'covers' another, or how large the structure has to be to do that. Covering problems are minimization problems and usually linear programs, whose dual problems are called packing problems.

The most prominent examples of covering problems are the set cover problem, which is equivalent to the hitting set problem, and its special cases, the vertex cover problem and the edge cover problem.

Template:Covering-Packing Problem Pairs

General LP formulation

In the context of linear programming, one can think of any linear program as a covering problem if the coefficients in the constraint matrix, the objective function, and right-hand side are nonnegative.[1] More precisely, let us consider the following general integer linear program:

minimize i=1ncixi
subject to i=1naijxibj for j=1,,m
xi0 for i=1,,n.

Such an integer linear program is called covering problem if aij,bj,ci0 for all i=1,,n and j=1,,m.

Intuition: Assume having n types of object and each object of type i has an associated cost of ci. The number xi indicates how many objects of type i we buy. If the constraints Axb are satisfied, it is said that x is a covering (the structures that are covered depend on the combinatorial context). Finally, an optimal solution to the above integer linear program is a covering of minimal cost.

Other uses

For Petri nets, for example, the covering problem is defined as the question if for a given marking, there exists a run of the net, such that some larger (or equal) marking can be reached. Larger means here that all components are at least as large as the ones of the given marking and at least one is properly larger.

See also

Notes

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

References

  • 20 year-old Real Estate Agent Rusty from Saint-Paul, has hobbies and interests which includes monopoly, property developers in singapore and poker. Will soon undertake a contiki trip that may include going to the Lower Valley of the Omo.

    My blog: http://www.primaboinca.com/view_profile.php?userid=5889534