Upsampling: Difference between revisions
en>Mblumber Disambiguated: anti-aliasing → anti-aliasing filter |
en>Bob K m →Interpolation filter design: comma |
||
Line 1: | Line 1: | ||
{{Transformation rules}} | |||
'''Destructive dilemma'''<ref>Hurley, Patrick. A Concise Introduction to Logic With Ilrn Printed Access Card. Wadsworth Pub Co, 2008. Page 361</ref><ref>Moore and Parker</ref> is the name of a [[validity|valid]] [[rule of inference]] of [[propositional calculus|propositional logic]]. It is the [[inference]] that, if ''P'' implies ''Q'' and ''R'' implies ''S'' and either ''Q'' is false or ''S'' is false, then either ''P'' or ''R'' must be false. In sum, if two [[material conditional|conditionals]] are true, but one of their [[consequent]]s is false, then one of their [[Antecedent (logic)|antecedent]]s has to be false. ''Destructive dilemma'' is the [[Logical disjunction|disjunctive]] version of ''[[modus tollens]]''. The disjunctive version of ''[[modus ponens]]'' is the [[constructive dilemma]]. The rule can be stated: | |||
:<math>\frac{P \to Q, R \to S, \neg Q \or \neg S}{\therefore \neg P \or \neg R}</math> | |||
where the rule is that wherever instances of "<math>P \to Q</math>", "<math>R \to S</math>", and "<math>\neg Q \or \neg S</math>" appear on lines of a proof, "<math>\neg P \or \neg R</math>" can be placed on a subsequent line. | |||
==Formal notation== | |||
The ''destructive dilemma'' rule may be written in [[sequent]] notation: | |||
: <math>(P \to Q), (R \to S), (\neg Q \or \neg S) \vdash (\neg P \or \neg R)</math> | |||
where <math>\vdash</math> is a [[metalogic]]al symbol meaning that <math>\neg P \or \neg R</math> is a [[logical consequence|syntactic consequence]] of <math>P \to Q</math>, <math>R \to S</math>, and <math>\neg Q \or \neg S</math> in some [[formal system|logical system]]; | |||
and expressed as a truth-functional [[tautology (logic)|tautology]] or [[theorem]] of propositional logic: | |||
:<math>(((P \to Q) \and (R \to S)) \and (\neg Q \or \neg S)) \to (\neg P \or \neg R)</math> | |||
where <math>P</math>, <math>Q</math>, <math>R</math> and <math>S</math> are propositions expressed in some formal system. | |||
==Natural language example== | |||
:If it rains, we will stay inside. | |||
:If it is sunny, we will go for a walk. | |||
:Either we will not stay inside, or we will not go for a walk. | |||
:Therefore, either it will not rain, or it will not be sunny. | |||
==Proof== | |||
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:45%" | |||
|+ ''' ''' | |||
|- style="background:paleturquoise" | |||
! style="width:15%" | ''Proposition'' | |||
! style="width:15%" | ''Derivation'' | |||
|- | |||
| <math>(A\rightarrow B)\and (C\rightarrow D)</math> || Given | |||
|- | |||
| <math>\neg B\or\neg D</math> || Given | |||
|- | |||
| <math>B\rightarrow\neg D</math> || [[Material implication (rule of inference)|Material implication]] | |||
|- | |||
| <math>\neg D\rightarrow\neg C</math> || [[Transposition (logic)|Transposition]] | |||
|- | |||
| <math>B\rightarrow\neg C</math> || [[Hypothetical syllogism]] | |||
|- | |||
| <math>A\rightarrow B</math> || [[Simplification]] | |||
|- | |||
| <math>A\rightarrow\neg C</math> || Hypothetical syllogism | |||
|- | |||
| <math>\neg A\or\neg C</math> || Material implication | |||
|} | |||
|} | |||
==Example proof== | |||
The validity of this argument structure can be shown by using both [[conditional proof]] (CP) and [[reductio ad absurdum]] (RAA) in the following way: | |||
{| | |||
|- | |||
|align=right| 1. || <math> ((P \rightarrow Q) \And (R \rightarrow S)) \And (\neg Q \vee \neg S) </math>||(CP assumption) | |||
|- | |||
|align=right| 2. || <math> (P \rightarrow Q) \And (R \rightarrow S) </math>||(1: Simplification) | |||
|- | |||
|align=right| 3. || <math> (P \rightarrow Q) </math>||(2: simplification) | |||
|- | |||
|align=right| 4. || <math> (R \rightarrow S) </math>||(2: simplification) | |||
|- | |||
|align=right| 5. || <math> (\neg Q \vee \neg S) </math>||(1: simplification) | |||
|- | |||
|align=right| 6. || <math> \neg (\neg P \vee \neg R) </math>||(RAA assumption) | |||
|- | |||
|align=right| 7. || <math> \neg \neg P \And \neg \neg R </math>||(6: [[DeMorgan's Law]]) | |||
|- | |||
|align=right| 8. || <math> \neg \neg P </math>||(7: simplification) | |||
|- | |||
|align=right| 9. || <math> \neg \neg R </math>||(7: simplification) | |||
|- | |||
|align=right| 10. || <math> P </math>||(8: [[double negation]]) | |||
|- | |||
|align=right| 11. || <math> R </math>||(9: double negation) | |||
|- | |||
|align=right| 12. || <math> Q </math>||(3,10: modus ponens) | |||
|- | |||
|align=right| 13. || <math> S </math>||(4,11: modus ponens) | |||
|- | |||
|align=right| 14. || <math> \neg \neg Q </math>||(12: double negation) | |||
|- | |||
|align=right| 15. || <math> \neg S </math>||(5, 14: [[disjunctive syllogism]]) | |||
|- | |||
|align=right| 16. || <math> S \And \neg S </math>||(13,15: [[Logical conjunction|conjunction]]) | |||
|- | |||
|align=right| 17. || <math> \neg P \vee \neg R </math>||(6-16: RAA) | |||
|- | |||
|align=right| | |||
|- | |||
|align=right| 18. || <math> (((P \rightarrow Q) \And (R \rightarrow S)) \And (\neg Q \vee \neg S))) \rightarrow \neg P \vee \neg R </math>||(1-17: CP) | |||
|} | |||
==References== | |||
{{reflist}} | |||
* Howard-Snyder, Frances; Howard-Snyder, Daniel; Wasserman, Ryan. The Power of Logic (4th ed.). McGraw-Hill, 2009, ISBN 978-0-07-340737-1, p. 414. | |||
==External links== | |||
*http://mathworld.wolfram.com/DestructiveDilemma.html | |||
{{DEFAULTSORT:Destructive Dilemma}} | |||
[[Category:Rules of inference]] | |||
[[Category:Dilemmas]] | |||
[[Category:Theorems in propositional logic]] |
Revision as of 15:16, 22 January 2014
Destructive dilemma[1][2] is the name of a valid rule of inference of propositional logic. It is the inference that, if P implies Q and R implies S and either Q is false or S is false, then either P or R must be false. In sum, if two conditionals are true, but one of their consequents is false, then one of their antecedents has to be false. Destructive dilemma is the disjunctive version of modus tollens. The disjunctive version of modus ponens is the constructive dilemma. The rule can be stated:
where the rule is that wherever instances of "", "", and "" appear on lines of a proof, "" can be placed on a subsequent line.
Formal notation
The destructive dilemma rule may be written in sequent notation:
where is a metalogical symbol meaning that is a syntactic consequence of , , and in some logical system;
and expressed as a truth-functional tautology or theorem of propositional logic:
where , , and are propositions expressed in some formal system.
Natural language example
- If it rains, we will stay inside.
- If it is sunny, we will go for a walk.
- Either we will not stay inside, or we will not go for a walk.
- Therefore, either it will not rain, or it will not be sunny.
Proof
Proposition | Derivation |
---|---|
Given | |
Given | |
Material implication | |
Transposition | |
Hypothetical syllogism | |
Simplification | |
Hypothetical syllogism | |
Material implication |
|}
Example proof
The validity of this argument structure can be shown by using both conditional proof (CP) and reductio ad absurdum (RAA) in the following way:
1. | (CP assumption) | |
2. | (1: Simplification) | |
3. | (2: simplification) | |
4. | (2: simplification) | |
5. | (1: simplification) | |
6. | (RAA assumption) | |
7. | (6: DeMorgan's Law) | |
8. | (7: simplification) | |
9. | (7: simplification) | |
10. | (8: double negation) | |
11. | (9: double negation) | |
12. | (3,10: modus ponens) | |
13. | (4,11: modus ponens) | |
14. | (12: double negation) | |
15. | (5, 14: disjunctive syllogism) | |
16. | (13,15: conjunction) | |
17. | (6-16: RAA) | |
18. | (1-17: CP) |
References
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.
- Howard-Snyder, Frances; Howard-Snyder, Daniel; Wasserman, Ryan. The Power of Logic (4th ed.). McGraw-Hill, 2009, ISBN 978-0-07-340737-1, p. 414.