Intersection homology

From formulasearchengine
Revision as of 02:44, 12 May 2012 by en>Helpful Pixie Bot (ISBNs (Build KH))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics, Fuglede's theorem is a result in operator theory, named after Bent Fuglede.

The result

Theorem (Fuglede) Let T and N be bounded operators on a complex Hilbert space with N being normal. If TN = NT, then TN* = N*T, where N* denotes the adjoint of N.

Normality of N is necessary, as is seen by taking T=N. When T is self-adjoint, the claim is trivial regardless of whether N is normal:

TN*=(NT)*=(TN)*=N*T.

Tentative Proof: If the underlying Hilbert space is finite-dimensional, the spectral theorem says that N is of the form

N=iλiPi

where Pi are pairwise orthogonal projections. One aspects that TN = NT if and only if TPi = PiT. Indeed it can be proved to be true by elementary arguments (e.g. it can be shown that all Pi are representable as polynomials of N and for this reason, if T commutes with N, it has to commute with Pi...). Therefore T must also commute with

N*=iλ¯iPi.

In general, when the Hilbert space is not finite-dimensional, the normal operator N gives rise to a projection-valued measure P on its spectrum, σ(N), which assigns a projection PΩ to each Borel subset of σ(N). N can be expressed as

N=σ(N)λdP(λ).

Differently from the finite dimensional case, it is by no means obvious that TN = NT implies TPΩ = PΩT. Thus, it is not so obvious that T also commutes with any simple function of the form

ρ=iλ¯PΩi.

Indeed, following the construction of the spectral decomposition for a bounded, normal, not self-adjoint, operator T, one sees that to verify that T commutes with PΩi, the most straightforward way is to assume that T commutes with both N and N*, giving rise to a vicious circle!

That is the relevance of Fuglede's theorem: The latter hypothesis is not really necessary.

Putnam's generalization

The following contains Fuglede's result as a special case. The proof by Rosenblum pictured below is just that presented by Fuglede for his theorem when assuming N=M.

Theorem (Calvin Richard Putnam) Let T, M, N be linear operators on a complex Hilbert space, and suppose that M and N are normal, M is bounded and MT = TN. Then M*T = TN*.

First proof (Marvin Rosenblum): By induction, the hypothesis implies that MkT = TNk for all k. Thus for any λ in ,

eλ¯MT=Teλ¯N.

Consider the function

F(λ)=eλM*TeλN*.

This is equal to

eλM*[eλ¯MTeλ¯N]eλN*=U(λ)TV(λ)1,

where U(λ)=eλM*λ¯M and V(λ)=eλN*λ¯N. However we have

U(λ)*=eλ¯MλM*=U(λ)1

so U is unitary, and hence has norm 1 for all λ; the same is true for V(λ), so

F(λ)Tλ.

So F is a bounded analytic vector-valued function, and is thus constant, and equal to F(0) = T. Considering the first-order terms in the expansion for small λ, we must have M*T = TN*.

The original paper of Fuglede appeared in 1950; it was extended to the form given above by Putnam in 1951. The short proof given above was first published by Rosenblum in 1958; it is very elegant, but is less general than the original proof which also considered the case of unbounded operators. Another simple proof of Putnam's theorem is as follows:

Second proof: Consider the matrices

T=[00T0]andN=[N00M].

The operator N' is normal and, by assumption, T' N' = N' T' . By Fuglede's theorem, one has

T(N)*=(N)*T.

Comparing entries then gives the desired result.

From Putnam's generalization, one can deduce the following:

Corollary If two normal operators M and N are similar, then they are unitarily equivalent.

Proof: Suppose MS = SN where S is a bounded invertible operator. Putnam's result implies M*S = SN*, i.e.

S1M*S=N*.

Take the adjoint of the above equation and we have

S*M(S1)*=N.

So

S*M(S1)*=S1MSSS*M(SS*)1=M.

Therefore, on Ran(M), SS* is the identity operator. SS* can be extended to Ran(M) = Ker(M). Therefore, by normality of M, SS* = I, the identity operator. Similarly, S*S = I. This shows that S is unitary.

Corollary If M and N are normal operators, and MN = NM, then MN is also normal.

Proof: The argument invokes only Fuglede's theoerm. One can directly compute

(MN)(MN)*=MN(NM)*=MNM*N*.

By Fuglede, the above becomes

=MM*NN*=M*MN*N.

But M and N are normal, so

=M*N*MN=(MN)*MN.

C*-algebras

The theorem can be rephrased as a statement about elements of C*-algebras.

Theorem (Fuglede-Putnam-Rosenblum) Let x, y be two normal elements of a C*-algebra A and z such that xz = zy. Then it follows that x* z = z y*.

References