Univalent function

From formulasearchengine
Jump to navigation Jump to search

In linear algebra, similarity invariance is a property exhibited by a function whose value is unchanged under similarities of its domain. That is, f is invariant under similarities if f(A)=f(B1AB) where B1AB is a matrix similar to A. Examples of such functions include the trace, determinant, and the minimal polynomial.

A more colloquial phrase that means the same thing as similarity invariance is "basis independence", since a matrix can be regarded as a linear operator, written in a certain basis, and the same operator in a new base is related to one in the old base by the conjugation B1AB, where B is the transformation matrix to the new base.

See also


Template:Mathanalysis-stub