Quasi-finite morphism

From formulasearchengine
Revision as of 04:31, 23 March 2013 by en>Theopolisme (General cleanup: filling in references)
Jump to navigation Jump to search

In fluid dynamics, Sauter mean diameter (SMD, d32 or D[3, 2]) is an average of particle size. It was originally developed by German scientist J. Sauter in the late 1920s.[1] It is defined as the diameter of a sphere that has the same volume/surface area ratio as a particle of interest. Several methods have been devised to obtain a good estimate of the SMD.

SMD is typically defined in terms of the surface diameter, ds:

ds=Apπ

and volume diameter, dv:

dv=(6Vpπ)1/3,

where Ap and Vp are the surface area and volume of the particle, respectively. If ds and dv are measured directly by other means without knowledge of Ap or Vp, Sauter diameter for a given particle is

SD=D[3,2]=d32=dv3ds2.

If the actual surface area, Ap and volume, Vp of the particle are known the equation simplifies further:

VpAp=43π(dv/2)34π(ds/2)2=(dv/2)33(ds/2)2=d326
d32=6VpAp.

This is usually taken as the mean of several measurements, to obtain the Sauter mean diameter, SMD: This provides intrinsic data that help determine the particle size for fluid problems.

Applications

The SMD can be defined as the diameter of a drop having the same volume/surface area ratio as the entire spray.

Ds=1ifidi
fi is the scalar variable for the dispersed phase
di is the discrete bubble size

SMD is especially important in calculations where the active surface area is important. Such areas include catalysis and applications in fuel combustion.

See also

References

43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.

  1. Sauter J. "Die Grössenbestimmung der in Gemischnebeln von Verbrennungskraftmaschinen vorhandenen Brennstoffteilchen" VDI-Forschungsheft Nr. 279 (1926) und Nr. 312 (1928)