Ugly duckling theorem
In mathematics, a bitopological space is a set endowed with two topologies. Typically, if the set is and the topologies are and then we refer to the bitopological space as .
Bi-continuity
A map from a bitopological space to another bitopological space is called bi-continuous if is continuous both as a map from to and as map from to .
Bitopological variants of topological properties
Corresponding to well-known properties of topological spaces, there are versions for bitopological spaces.
- A bitopological space is pairwise Hausdorff if for any two distinct points there exist disjoint and with either and or and .
- A bitopological space is pairwise zero-dimensional if opens in which are closed in form a basis for , and opens in which are closed in form a basis for .
- A bitopological space is called binormal if for every -closed and -closed sets there are -open and -open sets such that , and
References
- Kelly, J. C. (1963). Bitopological spaces. Proc. London Math. Soc., 13(3) 71—89.
- Reilly, I. L. (1972). On bitopological separation properties. Nanta Math., (2) 14—25.
- Reilly, I. L. (1973). Zero dimensional bitopological spaces. Indag. Math., (35) 127—131.
- Salbany, S. (1974). Bitopological spaces, compactifications and completions. Department of Mathematics, University of Cape Town, Cape Town.
- Kopperman, R. (1995). Asymmetry and duality in topology. Topology Appl., 66(1) 1--39.