Formation and evolution of the Solar System

From formulasearchengine
Revision as of 17:57, 21 January 2014 by en>MusikAnimal (Reverted edits by 207.28.222.49 (talk) to last revision by Gilliam (HG))
Jump to navigation Jump to search

The Benaloh Cryptosystem is an extension of the Goldwasser-Micali cryptosystem (GM) created in 1994 by Josh (Cohen) Benaloh. The main improvement of the Benaloh Cryptosystem over GM is that longer blocks of data can be encrypted at once, whereas in GM each bit is encrypted individually.

Scheme Definition

Like many public key cryptosystems, this scheme works in the group (/n)* where n is a product of two large primes. This scheme is homomorphic and hence malleable.

Key Generation

A public/private key pair is generated as follows:

The public key is then y,n, and the private key is the two primes p,q.

Message Encryption

To encrypt a message m, where m is taken to be an element in /r

Message Decryption

To understand decryption, we first notice that for any m,u we have

(ymur)(p1)(q1)/rym(p1)(q1)/ru(p1)(q1)ym(p1)(q1)/rmodn

Since m < r and y(p1)(q1)/r≢1modn, we can conclude that (ymur)(p1)(q1)/r1modn if and only if m = 0.

So if z=ymurmodn is an encryption of m, given the secret key p,q we can determine whether m=0. If r is small, we can decrypt z by doing an exhaustive search, i.e. decrypting the messages y-iz for i from 1 to r. By precomputing values, using the Baby-step giant-step algorithm, decryption can be done in time O(r).

Security

The security of this scheme rests on the Higher residuosity problem, specifically, given z,r and n where the factorization of n is unknown, it is computationally infeasible to determine whether z is an rth residue mod n, i.e. if there exists an x such that zxrmodn.

References

Original Paper (ps) Template:Cryptography navbox