Dyck graph

From formulasearchengine
Revision as of 05:32, 11 March 2013 by en>Addbot (Bot: Migrating 2 interwiki links, now provided by Wikidata on d:q3115480)
Jump to navigation Jump to search

In mathematics, a Neumann polynomial, introduced by Carl Neumann for the special case α=0, is a polynomial in 1/z used to expand functions in term of Bessel functions.[1]

The first few polynomials are

O0(α)(t)=1t,
O1(α)(t)=2α+1t2,
O2(α)(t)=2+αt+4(2+α)(1+α)t3,
O3(α)(t)=2(1+α)(3+α)t2+8(1+α)(2+α)(3+α)t4,
O4(α)(t)=(1+α)(4+α)2t+4(1+α)(2+α)(4+α)t3+16(1+α)(2+α)(3+α)(4+α)t5.

A general form for the polynomial is

On(α)(t)=α+n2αk=0n/2(1)nk(nk)!k!(αnk)(2t)n+12k,

they have the generating function

(z2)αΓ(α+1)1tz=n=0On(α)(t)Jα+n(z),

where J are Bessel functions.

To expand a function f in form

f(z)=n=0anJα+n(z)

for |z|<c compute

an=12πi|z|=cΓ(α+1)(z2)αf(z)On(α)(z)dz,

where c<c and c is the distance of the nearest singularity of zαf(z) from z=0.

Examples

An example is the extension

(12z)s=Γ(s)k=0(1)kJs+2k(z)(s+2k)(sk)

or the more general Sonine formula[2]

eiγz=Γ(s)k=0ikCk(s)(γ)(s+k)Js+k(z)(z2)s.

where Ck(s) is Gegenbauer's polynomial. Then,Template:FactTemplate:Or

(z2)2k(2k1)!Js(z)=i=k(1)ik(i+k12k1)(i+k+s12k1)(s+2i)Js+2i(z),
n=0tnJs+n(z)=etz2tsj=0(z2t)jj!γ(j+s,tz2)Γ(j+s)=0ezx22tzxtJs(z1x2)1x2sdx,

the confluent hypergeometric function

M(a,s,z)=Γ(s)k=0(1t)kLk(ak)(t)Js+k1(2tz)(tz)sk1

and in particular

Js(2z)zs=4sΓ(s+12)πe2izk=0Lk(s1/2k)(it4)(4iz)kJ2s+k(2tz)tz2s+k,

the index shift formula

Γ(νμ)Jν(z)=Γ(μ+1)n=0Γ(νμ+n)n!Γ(ν+n+1)(z2)νμ+nJμ+n(z),

the Taylor expansion (addition formula)

Js(z22uz)(z22uz)±s=k=0(±u)kk!Js±k(z)z±s

(cf.[3]Template:Verification failed) and the expansion of the integral of the Bessel function

Js(z)dz=2k=0Js+2k+1(z)

are of the same type.

See also

Notes

  1. Abramowitz and Stegun, p. 363, 9.1.82 ff.
  2. Template:Harvnb II.7.10.1, p.64
  3. I.S. Gradshteyn (И.С. Градштейн), I.M. Ryzhik (И.М. Рыжи); Alan Jeffrey, Daniel Zwillinger, editors. Table of Integrals, Series, and Products, seventh edition. Academic Press, 2007. ISBN 978-0-12-373637-6. Equation 8.515.1