List of integrals of trigonometric functions

From formulasearchengine
Revision as of 08:12, 22 January 2014 by 101.165.16.135 (talk) (Integral over a full circle)
Jump to navigation Jump to search

The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse hyperbolic functions. For a complete list of integral formulas, see lists of integrals.

Inverse hyperbolic sine integration formulas

arsinh(ax)dx=xarsinh(ax)a2x2+1a+C
xarsinh(ax)dx=x2arsinh(ax)2+arsinh(ax)4a2xa2x2+14a+C
x2arsinh(ax)dx=x3arsinh(ax)3(a2x22)a2x2+19a3+C
xmarsinh(ax)dx=xm+1arsinh(ax)m+1am+1xm+1a2x2+1dx(m1)
arsinh(ax)2dx=2x+xarsinh(ax)22a2x2+1arsinh(ax)a+C
arsinh(ax)ndx=xarsinh(ax)nna2x2+1arsinh(ax)n1a+n(n1)arsinh(ax)n2dx
arsinh(ax)ndx=xarsinh(ax)n+2(n+1)(n+2)+a2x2+1arsinh(ax)n+1a(n+1)+1(n+1)(n+2)arsinh(ax)n+2dx(n1,2)

Inverse hyperbolic cosine integration formulas

arcosh(ax)dx=xarcosh(ax)ax+1ax1a+C
xarcosh(ax)dx=x2arcosh(ax)2arcosh(ax)4a2xax+1ax14a+C
x2arcosh(ax)dx=x3arcosh(ax)3(a2x2+2)ax+1ax19a3+C
xmarcosh(ax)dx=xm+1arcosh(ax)m+1am+1xm+1ax+1ax1dx(m1)
arcosh(ax)2dx=2x+xarcosh(ax)22ax+1ax1arcosh(ax)a+C
arcosh(ax)ndx=xarcosh(ax)nnax+1ax1arcosh(ax)n1a+n(n1)arcosh(ax)n2dx
arcosh(ax)ndx=xarcosh(ax)n+2(n+1)(n+2)+ax+1ax1arcosh(ax)n+1a(n+1)+1(n+1)(n+2)arcosh(ax)n+2dx(n1,2)

Inverse hyperbolic tangent integration formulas

artanh(ax)dx=xartanh(ax)+ln(1a2x2)2a+C
xartanh(ax)dx=x2artanh(ax)2artanh(ax)2a2+x2a+C
x2artanh(ax)dx=x3artanh(ax)3+ln(1a2x2)6a3+x26a+C
xmartanh(ax)dx=xm+1artanh(ax)m+1am+1xm+11a2x2dx(m1)

Inverse hyperbolic cotangent integration formulas

arcoth(ax)dx=xarcoth(ax)+ln(a2x21)2a+C
xarcoth(ax)dx=x2arcoth(ax)2arcoth(ax)2a2+x2a+C
x2arcoth(ax)dx=x3arcoth(ax)3+ln(a2x21)6a3+x26a+C
xmarcoth(ax)dx=xm+1arcoth(ax)m+1+am+1xm+1a2x21dx(m1)

Inverse hyperbolic secant integration formulas

arsech(ax)dx=xarsech(ax)2aarctan1ax1+ax+C
xarsech(ax)dx=x2arsech(ax)2(1+ax)2a21ax1+ax+C
x2arsech(ax)dx=x3arsech(ax)313a3arctan1ax1+axx(1+ax)6a21ax1+ax+C
xmarsech(ax)dx=xm+1arsech(ax)m+1+1m+1xm(1+ax)1ax1+axdx(m1)

Inverse hyperbolic cosecant integration formulas

arcsch(ax)dx=xarcsch(ax)+1aarcoth1a2x2+1+C
xarcsch(ax)dx=x2arcsch(ax)2+x2a1a2x2+1+C
x2arcsch(ax)dx=x3arcsch(ax)316a3arcoth1a2x2+1+x26a1a2x2+1+C
xmarcsch(ax)dx=xm+1arcsch(ax)m+1+1a(m+1)xm11a2x2+1dx(m1)

Template:Lists of integrals