Conway's LUX method for magic squares
In probability theory, the total variation distance is a distance measure for probability distributions. It is an example of a statistical distance metric, and is sometimes just called "the" statistical distance.
Definition
The total variation distance between two probability measures P and Q on a sigma-algebra of subsets of the sample space is defined via[1]
Informally, this is the largest possible difference between the probabilities that the two probability distributions can assign to the same event.
For a finite alphabet we can relate the total variation distance to the 1-norm of the difference of the two probability distributions as follows:[2]
For arbitrary sample spaces, an equivalent definition of the total variation distance is
where is an arbitrary positive measure such that both and are absolutely continuous with respect to it and where and are the Radon-Nikodym derivatives of and with respect to .
The total variation distance is related to the Kullback–Leibler divergence by Pinsker's inequality.
See also
References
43 year old Petroleum Engineer Harry from Deep River, usually spends time with hobbies and interests like renting movies, property developers in singapore new condominium and vehicle racing. Constantly enjoys going to destinations like Camino Real de Tierra Adentro.