Cayley–Purser algorithm

From formulasearchengine
Revision as of 22:31, 2 January 2014 by en>Jb1944 (→‎History)
Jump to navigation Jump to search

In nuclear fusion research, the Lawson criterion, first derived on fusion reactors (initially classified) by John D. Lawson in 1955 and published in 1957,[1] is an important general measure of a system that defines the conditions needed for a fusion reactor to reach ignition, that is, that the heating of the plasma by the products of the fusion reactions is sufficient to maintain the temperature of the plasma against all losses without external power input. As originally formulated the Lawson criterion gives a minimum required value for the product of the plasma (electron) density ne and the "energy confinement time" . Later analysis suggested that a more useful figure of merit is the "triple product" of density, confinement time, and plasma temperature T. The triple product also has a minimum required value, and the name "Lawson criterion" often refers to this inequality.

Derivation

Lawson begins by assuming that any fusion reactor contains a hot plasma cloud which has a bell curve of energy. The energy released from fusion in a hot cloud is given by the volumetric fusion equation,[2] this is shown below.

where is the energy from the hot cloud, and is the number density of the light atoms being fused, is the nuclear cross section of the fusion reaction at that temperature, is the average velocity of the light atoms when they collide and is the energy made per fusion reaction.

Lawson argues next that all hot plasma clouds lose energy through two mechanisms: light radiation and conduction losses.[3] These would be on top of normal energy capture losses (see power plant efficiency). Light is generated in plasma every time a particle accelerates or decelerates (see Larmor formula). This occurs for various reasons, such as electrostatic interactions (Bremsstrahlung) or cyclotron radiation. When electrons in a plasma are above a critical density, this light can be reabsorbed.[4]

For the analysis, Lawson ignores conduction losses and uses a simple expression [2] to estimate light radiation from a hot cloud.

where is the number density of the cloud and is the temperature. By setting the radiation losses equal to the volumetric fusion rates Lawson estimates the minimum temperature for the fusion for the Deuterium-Tritium reaction at 30 million degrees (2.6 keV) and the Deuterium-Deuterium reaction at 150 million degrees (12.9 keV).[3][5]

Application to fusors and polywells

When applied to the fusor Lawson's analysis shows that conduction and radiation losses are the key impediment to reaching net power. Fusors uses a voltage drop to accelerate and collide ions, resulting in fusion.[6] The voltage drop is generated by wire cages, and these cages conduct away particles. Polywell are improvements on this design, designed to reduce conduction losses by removing the wire cages which cause them.[7] Regardless, it is argued that radiation is still a major impediment.[8]

The product neτE

The confinement time measures the rate at which a system loses energy to its environment. It is the energy density W (energy content per unit volume) divided by the power loss density (rate of energy loss per unit volume):

For a fusion reactor to operate in steady state, as magnetic fusion energy schemes usually entail, the fusion plasma must be maintained at a constant temperature. Thermal energy must therefore be added to it (either directly by the fusion products or by recirculating some of the electricity generated by the reactor) at the same rate the plasma loses energy (for instance by heat conduction to the device walls or radiation losses like bremsstrahlung).

For illustration, the Lawson criterion for the D-T reaction will be derived here, but the same principle can be applied to other fusion fuels. It will also be assumed that all species have the same temperature, that there are no ions present other than fuel ions (no impurities and no helium ash), and that D and T are present in the optimal 50-50 mixture.[9] In that case, the ion density is equal to the electron density and the energy density of both together is given by

where is the Boltzmann constant and is the electron density.

The volume rate f (reactions per volume per time) of fusion reactions is

where σ is the fusion cross section, is the relative velocity, and < > denotes an average over the Maxwellian velocity distribution at the temperature T.

The volume rate of heating by fusion is f times Ech, the energy of the charged fusion products (the neutrons cannot help to keep the plasma hot). In the case of the D-T reaction, Ech = 3.5 MeV.

The Lawson criterion, or minimum value of (electron density * energy confinement time) required for self-heating, for three fusion reactions. For DT, neτE minimizes near the temperature 25 keV (300 million kelvins).

The Lawson criterion is the requirement that the fusion heating exceed the losses:

Substituting in known quantities yields:

Rearranging the equation produces:

The quantity is a function of temperature with an absolute minimum. Replacing the function with its minimum value provides an absolute lower limit for the product . This is the Lawson criterion.

For the D-T reaction, the physical value is at least

The minimum of the product occurs near T = 25 keV.

The "triple product" neE

A still more useful figure of merit is the "triple product" of density, temperature, and confinement time, . For most confinement concepts, whether inertial, mirror, or toroidal confinement, the density and temperature can be varied over a fairly wide range, but the maximum pressure attainable is a constant. When that is the case, the fusion power density is proportional to . Therefore the maximum fusion power available from a given machine is obtained at the temperature where is a maximum. Following the derivation above, it is easy to show the inequality

The fusion triple product condition for three fusion reactions.

For the special case of tokamaks there is an additional motivation for using the triple product. Empirically, the energy confinement time is found to be nearly proportional to n1/3/P2/3. In an ignited plasma near the optimum temperature, the heating power P is equal to the fusion power and therefore proportional to n2T2. The triple product scales as

nTτ nT (n1/3/P2/3) nT (n1/3/(n2T2)2/3) T -1/3

Thus the triple product is only a weak function of density and temperature and therefore a good measure of the efficiency of the confinement scheme.

The quantity is also a function of temperature with an absolute minimum at a slightly lower temperature than .

For the D-T reaction, the physical value is about

This number has not yet been achieved in any reactor, although the latest generations of machines have come close. For instance, the TFTR has achieved the densities and energy lifetimes needed to achieve Lawson at the temperatures it can create, but it cannot create those temperatures at the same time. ITER aims to do both.

Inertial confinement

The Lawson criterion applies to inertial confinement fusion as well as to magnetic confinement fusion but is more usefully expressed in a different form. Whereas the energy confinement time in a magnetic system is very difficult to predict or even to establish empirically, in an inertial system it must be on the order of the time it takes sound waves to travel across the plasma:

Following the above derivation of the limit on neτE, we see that the product of the density and the radius must be greater than a value related to the minimum of T3/2/<σv>. This condition is traditionally expressed in terms of the mass density ρ:

ρR > 1 g/cm²

To satisfy this criterion at the density of solid D-T (0.2 g/cm³) would require an implausibly large laser pulse energy. Assuming the energy required scales with the mass of the fusion plasma (Elaser ~ ρR3 ~ ρ−2), compressing the fuel to 103 or 104 times solid density would reduce the energy required by a factor of 106 or 108, bringing it into a realistic range. With a compression by 103, the compressed density will be 200 g/cm³, and the compressed radius can be as small as 0.05 mm. The radius of the fuel before compression would be 0.5 mm. The initial pellet will be perhaps twice as large since most of the mass will be ablated during the compression.

The fusion power density is a good figure of merit to determine the optimum temperature for magnetic confinement, but for inertial confinement the fractional burn-up of the fuel is probably more useful. The burn-up should be proportional to the specific reaction rate (n²<σv>) times the confinement time (which scales as T-1/2) divided by the particle density n:

burn-up fraction ~ n²<σv> T-1/2 / n ~ (nT) (<σv>/T3/2)

Thus the optimum temperature for inertial confinement fusion is that which maximizes <σv>/T3/2, which is slightly higher than the optimum temperature for magnetic confinement.

See also

Notes

  1. J. D. Lawson, "Some Criteria for a Power Producing Thermonuclear Reactor", Proceedings of the Physical Society B, Volume 70 (1957), p. 6
  2. 2.0 2.1 Lyman J Spitzer, "The Physics of Fully Ionized Gases" 1963
  3. 3.0 3.1 J D Lawson "Some Criteria for a Power Producing Thermonuclear Reactor" 1957
  4. Atzeni, Stefano, and Jürgen Meyer-ter-Vehn. The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter. Oxford: Clarendon, 2004. Print.
  5. http://www.phys.ksu.edu/personal/cdlin/phystable/econvert.html
  6. Robert L. Hirsch, "Inertial-Electrostatic Confinement of Ionized Fusion Gases", Journal of Applied Physics, v. 38, no. 7, October 1967
  7. "The Advent of Clean Nuclear Fusion: Super-performance Space Power and Propulsion", Robert W. Bussard, Ph.D., 57th International Astronautical Congress, October 2–6, 2006
  8. odd H. Rider, "Fundamental limitations on plasma fusion systems not in thermodynamic equilibrium" Physics of Plasmas, April 1997, Volume 4, Issue 4, pp. 1039–1046.
  9. It is straightforward to relax these assumptions. The most difficult question is how to define n when the ion and electrons differ in density and temperature. Considering that this is a calculation of energy production and loss by ions, and that any plasma confinement concept must contain the pressure forces of the plasma, it seems appropriate to define the effective (electron) density n through the (total) pressure p as n = p/2Ti. The factor of 2 is included because n usually refers to the density of the electrons alone, but p here refers to the total pressure. Given two species with ion densities n1,2, atomic numbers Z1,2, ion temperature Ti, and electron temperature Te, it is easy to show that the fusion power is maximized by a fuel mix given by n1/n2 = (1+Z2Te/Ti)/(1+Z1Te/Ti). The values for nτ, nTτ, and the power density must be multiplied by the factor (1+Z1Te/Ti)×(1+Z2Te/Ti)/4. For example, with protons and boron (Z=5) as fuel, another factor of 3 must be included in the formulas. On the other hand, for cold electrons, the formulas must all be divided by 4 (with no additional factor for Z>1).

External links

The mathematical derivation is reproduced here [1].

Template:Fusion power